DOI QR코드

DOI QR Code

Sentinel-1A/B SAR 센서 기반 고해상도 토양수분 산정

Estimation of High-Resolution Soil Moisture based on Sentinel-1A/B SAR Sensors

  • Kim, Sangwoo (Department of Agricultural Civil Engineering, Kyoungpook National University) ;
  • Lee, Taehwa (Department of Agricultural Civil Engineering, Kyoungpook National University) ;
  • Shin, Yongchul (Department of Agricultural Civil Engineering, Kyoungpook National University)
  • 투고 : 2019.05.21
  • 심사 : 2019.09.02
  • 발행 : 2019.09.30

초록

In this study, we estimated the spatially-distributed soil moisture at the high resolution ($10m{\times}10m$) using the satellite-based Sentinel-1A/B SAR (Synthetic Aperture Radar) sensor images. The Sentinel-1A/B raw data were pre-processed using the SNAP (Sentinel Application Platform) tool provided from ESA (European Space Agency), and then the pre-processed data were converted to the backscatter coefficients. The regression equations were derived based on the relationships between the TDR (Time Domain Reflectometry)-based soil moisture measurements and the converted backscatter coefficients. The TDR measurements from the 51 RDA (Rural Development Administration) monitoring sites were used to derive the regression equations. Then, the soil moisture values were estimated using the derived regression equations with the input data of Sentinel-1A/B based backscatter coefficients. Overall, the soil moisture estimates showed the linear trends compared to the TDR measurements with the high Pearson's correlations (more than 0.7). The Sentinel-1A/B based soil moisture values matched well with the TDR measurements with various land surface conditions (bare soil, crop, forest, and urban), especially for bare soil (R: 0.885~0.910 and RMSE: 3.162~4.609). However, the Mandae-ri (forest) and Taean-eup (urban) sites showed the negative correlations with the TDR measurements. These uncertainties might be due to limitations of soil surface penetration depths of SAR sensors and complicated land surface conditions (artificial constructions near the TDR site) at urban regions. These results may infer that qualities of Sentinel-1A/B based soil moisture products are dependent on land surface conditions. Although uncertainties exist, the Sentinel-1A/B based high-resolution soil moisture products could be useful in various areas (hydrology, agriculture, drought, flood, wild fire, etc.).

키워드

참고문헌

  1. Entekhabi, D., E. G. Njoku, P. E. O'Neill, K. H. Kellogg, W. T. Crow, W. N. Edelstein, J. K. Entin, S. D. Goodman, T. J. Jackson, J. Johnson, J. Kimball, J. R. Piepmeier, R. D. Koster, N. Martin, K. C. McDonald, M. Moghaddam, S. Moran, R. Reichle, J. C. Shi, M. W. Spencer, S. W. Thurman, L. Tsang, and J. Van Zyl, 2010. The soil moisture active passive (SMAP) mission. Proceedings of the IEEE 98(5): 704-716. doi:10.1109/JPROC.2010.2043918.
  2. Gao, Q., M. Zribi, M. J. Escorihuela, and N. Baghdadi, 2017. Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at 100 m resolution. Sensors 17(9):1966. doi:10.3390/s17091966.
  3. Hornacek, M., W. Wagner, D. Sabel, H. L. Truong, P. Snoeij, T. Hahmann, E. Diedrich, and M. Doubkova, 2012. Potential for high resolution systematic global surface soil moisture retrieval via change detection using Sentinel-1. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5(4): 1303-1311. doi:10.1109/jstars.2012.2190136.
  4. Hou, A. Y., R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. Iguchi, 2014. The Global Precipitation Measurement(GPM) mission. Bulletin of the American Meteorological Society 95(5): 701-722. https://doi.org/10.1175/BAMS-D-13-00164.1
  5. Imaoka, K., M. Kachi, H. Fujii, H. Murakami, M. Hori, A. Ono, T. Igarashi, K. Nakagawa, T. Oki, Y. Honda, and H. Shimoda, 2010. Global Change Observation Mission (GCOM) for monitoring carbon, water cycles, and climate change. Proceedings of the IEEE 98(5): 717-734. doi:10.1109/JPROC.2009.2036869.
  6. Jang, J. C. 2018. Retrieval of sea surface wind from Sentinel-1A/B SAR data in the seas around Korea, doctoral dissertation. Seoul National University (in Korean).
  7. Kerr, Y. H., P. Waldteufel, J. P. Wigneron, J. A. M. J. Martinuzzi, J. Font, and M. Berger, 2001. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Transactions on Geoscience and Remote Sensing 39(8): 1729-1735. doi:10.1109/36.942551.
  8. Lakshmi, V. 2013. Remote Sensing of Soil Moisture. ISRN Soil Science. doi:10.1155/2013/424178.
  9. Le Morvan, A., M. Zribi, N. Baghdadi, and A. Chanzy, 2008. Soil moisture profile effect on radar signal measurement. Sensors 8(1): 256-270. doi:10.3390/s8010256.
  10. Lee, S. J., S. W. Hong, J. Cho, and Y. W. Lee, 2017. Experimental retrieval of soil moisture for cropland in South Korea using Sentinel-1 SAR Data. Korean Journal of Remote Sensing 33(6): 947-960 (in Korean). doi:10.7780/kjrs.2017.33.6.1.4.
  11. Paloscia, S., S. Pettinato, E. Santi, C. Notarnicola, L. Pasolli, and A. Reppucci, 2013. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sensing of Environment 134: 234-248. doi:10.1016/j.rse.2013.02.027.
  12. Sabins, F. F., 2007. Remote sensing: Principles and applications. Waveland Press.
  13. Wagner, W., D. Sabel, M. Doubkova, A. Bartsch, and C. Pathe, 2009. The potential of Sentinel-1 for monitoring soil moisture with a high spatial resolution at global scale. In Symposium of Earth Observation and Water Cycle Science.
  14. Wagner, W., G. Lemoine, and H. Rott, 1999. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sensing of environment 70(2): 191-207. doi:10.1016/S0034-4257(99)00036-X