DOI QR코드

DOI QR Code

Applicability of Optical Particle Counters for Measurement of Airborne Pesticide Spray Drift

공기 중 농약 비산의 측정을 위한 광학 입자 측정기의 적용성 평가

  • Kim, Rack-Woo (Department of Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University) ;
  • Hong, Se-Woon (Department of Rural and Biosystems Engineering, Chonnam National University)
  • Received : 2019.08.07
  • Accepted : 2019.08.22
  • Published : 2019.09.30

Abstract

With desires for safe food, there is growing concern that pesticide spray drift will expose people, plants, and the environment to pesticide residue and potential negative effects thereof. For highly efficient, safe spray application, technologies for measuring the spray drift should be developed and improved with some urgency. This study investigated the applicability of two optical particle counters (OPCs), which are mostly used to measure airborne particle mass concentration, for measurement of airborne pesticide spray drift. Experiments were conducted in a controlled laboratory and an ash tree orchard to evaluate the handiness and accuracy of two OPCs, OPC 1 and OPC 2. The experimental results indicated that the OPC 1 was better applicable to the measurement of spray drift in the field while the use of the OPC 2 was limited due to its narrow range of measurable droplet sizes. The readings of the OPC 1 produced highly accurate results ($R^2=0.9637$) compared to the actual spray drift. For better application of OPCs, this study suggests the OPCs should be positioned properly to inhale spray droplets of the appropriate size and concentration.

Keywords

References

  1. Arvidsson, T., L. Bergstrom, and J. Kreuger, 2011. Comparison of collectors of airborne spray drift: Experiments in a wind tunnel and field measurements. Pest Management Science 67(6): 725-733. doi:10.1002/ps.2115.
  2. Baetens, K., D. Nuyttens, P. Verboven, M. De Schampheleire, B. Nicola, and H. Ramon, 2007. Predicting drift from field spraying by means of a 3D computational fluid dynamics model. Computers and Electronics in Agriculture 56(2): 161-173. doi:10.1016/j.compag.2007.01.009.
  3. Bueno, M. R., J. P. Cunha, and D. G. de Santana, 2017. Assessment of spray drift from pesticide applications in soybean crops. Biosystems Engineering 154: 35-45. doi:10.1016/j.biosystemseng.2016.10.017.
  4. Chen, Y., H. E. Ozkan, H. Zhu, R. C. Derksen, and C. R. Krause. 2013. Spray drift and off-target loss reductions with a precision air-assisted sprayer. Transactions of the ASABE 56(6): 1273-1281. doi:10.13031/trans.56.10173.
  5. De Schampheleire, M., P. Spanoghe, E. Brusselman, and S. Sonck, 2007. Risk assessment of pesticide spray drift damage in Belgium. Crop Protection 26(4): 602-611. doi:10.1016/j.cropro.2006.05.013.
  6. Farooq, M., and M. Salyani, 2004. Modeling of spray penetration and deposition on citrus tree canopies. Transactions of the ASABE 47(3): 619-628. doi:10.13031/2013.16091.
  7. Fox, R. D., R. C. Derksen, H. Zhu, R. A. Downer, and R. D. Brazee, 2004. Airborne spray collection efficiency of nylon screen. Applied Engineering in Agriculture 20: 147-152. doi:10.13031/2013.15883.
  8. Hong, S. W., L. Zhao, and H. Zhu, 2018. SAAS, a computer program for estimating pesticide spray efficiency and drift of air-assisted pesticide applications. Computers and Electronics in Agriculture 155: 58-68. doi:10.1016/j.compag.2018.09.031.
  9. Hong, S. W., and R. W. Kim, 2018. CFD modeling of pesticide flow and drift from an orchard sprayer. Journal of the Korean Society of Agricultural Engineers 60(3):27-36. doi:10.5389/KSAE.2018.60.3.027 (in Korean).
  10. Jensen, P. K., and M. H. Olesen, 2014. Spray mass balance in pesticide application: A review. Crop Protection 61:23-31. doi:10.1016/j.cropro.2014.03.006.
  11. Kostat, 2019. Pesticide and fertilizer uses. http://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=2422. Accessed 01 Aug. 2019.
  12. Mamane, A., C. Raherison, J. F. Tessier, I. Baldi, and G. Bouvier, 2015. Environmental exposure to pesticides and respiratory health. European Respiratory Review 24:462-473. doi:10.1183/16000617.00006114.
  13. Miller, G. T., 2004. Sustaining the earth, 6th edition. Thompson learning, Inc. Pacific Grove, California. 9:211-216.
  14. Miller, D. R., W. E. Yendol, and M. L. McManus, 1992. On the field sampling of pesticide spray distributions using Teflon spheres and flat cards. Journal of Environmental Science and Health, Part B 27: 185-208. doi:10.1080/03601239209372774.
  15. Pompe, J. C. A. M., H. J. Holterman, and B. C. P. M. van Straelen, 1992. Technical aspects of pesticide application. Wageningen Agricultural University. Netherlands, 49-50.
  16. You, K., H. Zhu, and J. R. Abbott, 2019. Deposition of fluorescent dye Brilliant Sulfaflavine on stainless steel screens as spray collectors. Transactions of the ASABE 62(2): 495-503. doi:10.13031/trans.13136.
  17. Zhao, H., C. Xie, F. Liu, X. He, J. Zhang, and J. Song, 2014. Effects of sprayers and nozzles on spray drift and terminal residues of imidacloprid on wheat. Crop Protection 60: 78-82. doi:10.1016/j.cropro.2014.02.009.