References
- Hu E, Wu X, Shang S, Tao XM, Jiang SX, Gan L. Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst. J. Clean. Prod. 2016;112:4710-4718. https://doi.org/10.1016/j.jclepro.2015.06.127
- Chang M, Shih Y. Synthesis and application of magnetic iron oxide nanoparticles on the removal of Reactive Black 5: Reaction mechanism, temperature and pH effects. J. Environ. Manage. 2018;224:235-242. https://doi.org/10.1016/j.jenvman.2018.07.021
- Moussavi G, Mahmoudi M. Degradation and biodegradability improvement of the reactive red 198 azo dye using catalytic ozonation with MgO nanocrystals. Chem. Eng. J. 2009;152:1-7. https://doi.org/10.1016/j.cej.2009.03.014
- Wang H, Zheng XW, Su JQ, Tian Y, Xiong XJ, Zheng TL. Biological decolorization of the reactive dyes Reactive Black 5 by a novel isolated bacterial strain Enterobacter sp. EC3. J. Hazard. Mater. 2009;171:654-659. https://doi.org/10.1016/j.jhazmat.2009.06.050
- Tang S, Yuan D, Zhang Q, et al. Fe-Mn bi-metallic oxides loaded on granular activated carbon to enhance dye removal by catalytic ozonation. Environ. Sci. Pollut. Res. 2016;23:18800-18808. https://doi.org/10.1007/s11356-016-7030-5
-
Beltran F, Rivas F, Ramon M. Catalytic ozonation of oxalic acid in an aqueous
$TiO_2$ slurry reactor. Appl. Catal. B- Environ. 2002;39:221-231. https://doi.org/10.1016/S0926-3373(02)00102-9 - Beltran FJ, Rivas FJ, Montero-De-Espinosa R. Iron type catalysts for the ozonation of oxalic acid in water. Water Res. 2005;39:3553-3564. https://doi.org/10.1016/j.watres.2005.06.018
- Liu ZQ, Ma J, Cui YH. Carbon nanotube supported platinum catalysts for the ozonation of oxalic acid in aqueous solutions. Carbon 2008;46:890-897. https://doi.org/10.1016/j.carbon.2008.02.018
- Ni CH, Chen JN. Heterogeneous catalytic ozonation of 2-chlorophenol queous solution with alumina as a catalyst. Water Sci. Technol. 2001;43:213-220.
- Zhang F, Wu K, Zhou H, et al. Ozonation of aqueous phenol catalyzed by biochar produced from sludge obtained in the treatment of coking wastewater. J. Environ. Manage. 2018;224:376-386. https://doi.org/10.1016/j.jenvman.2018.07.038
-
He K, Dong Y, Yin L, Zhang A, Li Z. A facile hydrothermal method to synthesize nanosized
$Co_3O_4$ /$CeO_2$ and study of its catalytic characteristic in catalytic ozonation of phenol. Catal. Lett. 2009;133:209-213. https://doi.org/10.1007/s10562-009-0105-x -
Pugazhenthiran N, Sathishkumar P. Effective degradation of acid orange 10 by catalytic ozonation in the presence of Au-
$Bi_2O_3$ nanoparticles. Chem. Eng. J. 2011;168:1227-1233. https://doi.org/10.1016/j.cej.2011.02.020 - Qin W, Li X, Qi J. Experimental and theoretical investigation of the catalytic ozonation on the surface of NiO-CuO nanoparticles. Langmuir 2010;25:8001-8011. https://doi.org/10.1021/la900476m
- Ikhlaq A, Brown DR, Kasprzyk-Hordern B. Catalytic ozonation for the removal of organic contaminants in water on ZSM-5 zeolites. Appl. Catal. B- Environ. 2014;154-155:110-122. https://doi.org/10.1016/j.apcatb.2014.02.010
-
Manivel A, Lee GJ, Chen CY, et al. Synthesis of
$MoO_3$ nanoparticles for azo dye degradation by catalytic ozonation. Mater. Res. Bull. 2015;62:184-191. https://doi.org/10.1016/j.materresbull.2014.11.016 - Pirgalioglu S, Ozbelge TA. Comparison of non-catalytic and catalytic ozonation processes of three different aqueous single dye solutions with respect to powder copper sulfide catalyst. Appl. Catal.- A Gen. 2009;363:157-163. https://doi.org/10.1016/j.apcata.2009.05.011
- Huang WJ, Fang GC, Wang CC. A nanometer-ZnO catalyst to enhance the ozonation of 2, 4, 6-trichlorophenol in water. Colloid. Surf. A: Physicochem. Eng. Asp. 2005;260:45-51. https://doi.org/10.1016/j.colsurfa.2005.01.031
- Chaudhary S, Kaur Y, Umar A, Chaudhary GR. 1-butyl-3-methylimidazolium tetrafluoroborate functionalized ZnO nanoparticles for removal of toxic organic dyes. J. Mol. Liq. 2016;220:1013-1021. https://doi.org/10.1016/j.molliq.2016.05.011
- Oskoei V, Dehghani MH, Nazmara S, et al. Removal of humic acid from aqueous solution using UV/ZnO nano-photocatalysis and adsorption. J. Mol. Liq. 2015;213:374-380. https://doi.org/10.1016/j.molliq.2015.07.052
- Sathe P, Myint MTZ, Dobretsov S, Dutta J. Removal and regrowth inhibition of microalgae using visible light photocatalysis with ZnO nanorods: A green technology. Sep. Purif. Technol. 2016;162:61-67. https://doi.org/10.1016/j.seppur.2016.02.007
- Hong R, Pan T, Qian J, Li H. Synthesis and surface modification of ZnO nanoparticles. Chem. Eng. J. 2006;119:71-81. https://doi.org/10.1016/j.cej.2006.03.003
-
Zhou Y, Xia C, Hu X, et al. Dye-sensitized solar cells based on nanoparticle-decorated ZnO/
$SnO_2$ core/shell nanoneedle arrays. Appl. Surf. Sci. 2014;292:111-116. https://doi.org/10.1016/j.apsusc.2013.11.095 - Mohaghegh N, Tasviri M, Rahimi E, Gholami MR. Nano sized ZnO composites: Preparation, characterization and application as photocatalysts for degradation of AB92 azo dye. Mater. Sci. Semicond. Process. 2014;21:167-179. https://doi.org/10.1016/j.mssp.2013.12.023
- Hayat K, Gondal MA, Khaled MM, Ahmed S, Shemsi AM. Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water. Appl. Catal.- A Gen. 2011;393:122-129. https://doi.org/10.1016/j.apcata.2010.11.032
- Chrissanthopoulos A, Kyriazis FC, Nikolakis V, et al. ZnO/zeolite hybrid nanostructures: Synthesis, structure, optical properties, and simulation. Thin Solid Films 2014;555:21-27. https://doi.org/10.1016/j.tsf.2013.05.157
- Bouvy C, Marine W, Sporken R, Su BL. Nanosized ZnO confined inside a Faujasite X zeolite matrix: Characterization and optical properties. Colloid. Surf. A- Physicochem. Eng. Asp. 2007;300:145-149. https://doi.org/10.1016/j.colsurfa.2006.12.043
- Kiomarsipour N, Razavi RS. Superlattices and microstructures characterization and optical property of ZnO nano-, submicro-and microrods synthesized by hydrothermal method on a large-scale. Superlatt. Microstruct. 2012;52:704-710. https://doi.org/10.1016/j.spmi.2012.07.003
- He W, Zhao H, Jia H, Yin JJ, Zheng Z. Determination of reactive oxygen species from ZnO micro-nano structures with shape-dependent photocatalytic activity. Mater. Res. Bull. 2014;53:246-250. https://doi.org/10.1016/j.materresbull.2014.02.020
- Wang Y, Yang Y, Xi L, et al. A simple hydrothermal synthesis of flower-like ZnO microspheres and their improved photo catalytic activity. Mater. Lett. 2016;180:55-58. https://doi.org/10.1016/j.matlet.2016.05.107
- Radosavljevic-Mihajlovic A, Dondur V, Dakovic A, Lemic J, Tomasevic-Canovic M. Physicochemical and structural characteristics of HEU-type zeolitic tuff treated by hydrochloric acid. J. Serb. Chem. Soc. 2004;69:273-281. https://doi.org/10.2298/JSC0404273R
-
Chen CY, Cheng MC, Chen AH. Photocatalytic decolorization of Remazol Black 5 and Remazol Brilliant Orange 3R by mesoporous
$TiO_2$ . J. Environ. Manage. 2012;102:125-133. https://doi.org/10.1016/j.jenvman.2012.02.024 - Al-jeboori FHA, Al-shimiesawi TAM, Mohammed O, Jassim N. Synthesis and characterization of some essential amino acid metal complexes having biological activity. J. Chem. Pharma. Res. 2013;5:172-176.
- Weng CH, Lin YT, Yuan HM. Rapid decoloration of Reactive Black 5 by an advanced Fenton process in conjunction with ultrasound. Sep. Purif. Technol. 2013;117:75-82. https://doi.org/10.1016/j.seppur.2013.03.047
-
Khataee AR, Pons MN, Zahraa O. Photocatalytic degradation of three azo dyes using immobilized
$TiO_2$ nanoparticles on glass plates activated by UV light irradiation: Influence of dye molecular structure. J. Hazard. Mater. 2009;168:451-457. https://doi.org/10.1016/j.jhazmat.2009.02.052 - Sun Q, Li L, Yan H, Hong X, Hui KS, Pan Z. Influence of the surface hydroxyl groups of MnOx/SBA-15 on heterogeneous catalytic ozonation of oxalic acid. Chem. Eng. J. 2014;242:348-356. https://doi.org/10.1016/j.cej.2013.12.097
- Ikhlaq A, Brown DR, Kasprzyk-Hordern B. Mechanisms of catalytic ozonation on alumina and zeolites in water:formatin of hydroxyl radicals. Appl. Catal. B- Environ. 2012;123-124:94-106. https://doi.org/10.1016/j.apcatb.2012.04.015
- Mahmoodi NM. Photocatalytic ozonation of dyes using multi-walled carbon nanotube. J. Mol. Catal.-A Chem. 2013;366:254-260. https://doi.org/10.1016/j.molcata.2012.10.002
- Turkay O, Inan H, Dimoglo A. Experimental and theoretical study on catalytic ozonation of humic acid by ZnO catalyst. Sep. Sci. Technol. 2017;52:778-786. https://doi.org/10.1080/01496395.2016.1252776
- Zhang T, Li WW, Croue JP. Catalytic ozonation of oxalate with a cerium supported palladium oxide: An efficient degradation not relying on hydroxyl radicals oxidation. Environ. Sci. Technol. 2011;45:9339-9346. https://doi.org/10.1021/es202209j
- Gao G, Shen J, Chu W, Chen Z, Yuan L. Mechanism of enhanced diclofenac mineralization by catalytic ozonation over iron silicate-loaded pumice. Sep. Purif. Technol. 2017;173:55-62. https://doi.org/10.1016/j.seppur.2016.09.016
- Venkatesh S, Quaff AR, Pandey ND, Venkatesh K. Impact of ozonation on decolorization and mineralization of azo dyes: Biodegradability enhancement, by-Products formation, required energy and cost. Ozone Sci. Eng. 2015;37:420-430. https://doi.org/10.1080/01919512.2015.1027810
Cited by
- Nano-Catalysts in Ozone-Based Advanced Oxidation Processes for Wastewater Treatment vol.6, pp.3, 2019, https://doi.org/10.1007/s40726-020-00147-3
- A study on novel coupled membrane bioreactor with electro oxidation for biofouling reduction vol.26, pp.4, 2019, https://doi.org/10.4491/eer.2020.039
- Advanced catalytic ozonation for degradation of pharmaceutical pollutants―A review vol.289, 2019, https://doi.org/10.1016/j.chemosphere.2021.133208
- Novel Ti/TiHx/SnO2-Sb2O5-NiO-CNT electrode for electrochemical Ozone Generation for degradation of toxic textile azo dyes vol.27, pp.3, 2019, https://doi.org/10.4491/eer.2020.429