References
- Li K, Liu R, Sun C. Comparison of anaerobic digestion characteristics and kinetics of four livestock manures with different substrate concentrations. Bioresour. Technol. 2015;198:133-140. https://doi.org/10.1016/j.biortech.2015.08.151
- Xie T, Xie S, Sivakumar M, Nghiem LD. Relationship between the synergistic/antagonistic effect of anaerobic co-digestion and organic loading. Int. Biodeterior. Biodegrad. 2017;124:155-161. https://doi.org/10.1016/j.ibiod.2017.03.025
- Zhao J, Liu Y, Wang D, et al. Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Manage. 2017a;67:308-314. https://doi.org/10.1016/j.wasman.2017.05.016
- Feng Q, Lin Y. Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review. Renew. Sust. Energ. Rev. 2017;77:1272-1287. https://doi.org/10.1016/j.rser.2017.03.022
- Zhang L, Jahng D. Long-term anaerobic digestion of food waste stabilized by trace elements. Waste Manage. 2012;32:1509-1515. https://doi.org/10.1016/j.wasman.2012.03.015
- Zhao J, Liu Y, Wang D, et al. Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Manage. 2017b;67:308-314. https://doi.org/10.1016/j.wasman.2017.05.016
- Kumar G, Sivagurunathan P, Park JH, Kim SH. Anaerobic digestion of food waste to methane at various organic loading rates (OLRs) and hydraulic retention times (HRTs): Thermophilic vs. mesophilic regimes. Environ. Eng. Res. 2016;21:69-73. https://doi.org/10.4491/eer.2015.068
- Wang P, Wang HT, Qiu YQ, Ren LH, Jiang B. Microbial characteristics in anaerobic digestion process of food waste for methane production - A review. Bioresour. Technol. 2017b;248:29-36. https://doi.org/10.1016/j.biortech.2017.06.152
- Cecchi F, Traverso P, Pavan P, Bolzonella D, Innocenti L. Characteristics of the OFMSW and behavior of the anaerobic digestion process. In: Mata-Alvarez J, ed. Biomethanization of the organic fraction of municipal solid waste. UK: IWA; 2003. p. 141-180.
- Banks CJ, Chesshire M, Heaven S, Arnold R. Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance. Bioresour. Technol. 2011;102:612-620.
- Yang Q, Luo K, Li XM, et al. Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes. Bioresour. Technol. 2010;101:2924-2930. https://doi.org/10.1016/j.biortech.2009.11.012
- Sun J, Guo L, Li Q, et al. Structural and functional properties of organic matters in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) after heat pretreatment with waste sludge. Bioresour. Technol. 2010;219:614-623. https://doi.org/10.1016/j.biortech.2016.08.042
- Dhar BR, Nakhla G, Ray MB. Techno-economic evaluation of ultrasound and thermal pretreatments for enhanced anaerobic digestion of municipal waste activated sludge. Waste Manage. 2010;32:542-549. https://doi.org/10.1016/j.wasman.2011.10.007
- Zhang C, Xiao G, Peng L, Su H, Tan T. The anaerobic co-digestion of food waste and cattle manure. Bioresour. Technol. 2013;129:170-176. https://doi.org/10.1016/j.biortech.2012.10.138
- Grosser A, Neczaj E, Singh BR, Almas AR, Brattebo H, Kacprzak M. Anaerobic digestion of sewage sludge with grease trap sludge and municipal solid waste as co-substrates. Environ. Res. 2017;155:249-260. https://doi.org/10.1016/j.envres.2017.02.007
- Shin JD, Han SS, Eom KC, Sung SW, Park SW, Kim HO. Predicting methane production potential of anaerobic co-digestion of swine manure and food waste. Environ. Eng. Res. 2008;13:93-97. https://doi.org/10.4491/eer.2008.13.2.093
- Olsson J, Feng XM, Ascue J, et al. Co-digestion of cultivated microalgae and sewage sludge from municipal waste water treatment. Bioresour. Technol. 2014;171:203-210. https://doi.org/10.1016/j.biortech.2014.08.069
- Ohkouchi Y, Inoue Y. Direct production of L(+)-lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011. Bioresour. Technol. 2006;97:1554-1562. https://doi.org/10.1016/j.biortech.2005.06.004
- Chen J, Bai J, Li H, Chang C, Fang S. Prospects for bioethanol production from macroalgae. Trend. Renew. Energ. 2015a;1:185-197.
- Johnson AW. Invitation to organic chemistry. Massachusetts: Jones & Bartlett Learning; 1998.
- APHA. Standard methods for the examination of water and wastewater. 22nd ed. Washington D.C.: American Public Health Association; 2012.
- Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colormetric method for determination of sugars and related substances. Anal. Chem. 1956;28:350-356. https://doi.org/10.1021/ac60111a017
- Xie S, Hai FI, Zhan X, et al. Anaerobic co-digestion: A critical review of mathematical modelling for performance optimization. Bioresour. Technol. 2016;222:498-512. https://doi.org/10.1016/j.biortech.2016.10.015
- Lee EY, Cumberbatch J, Wang M, Zhang Q. Kinetic parameter estimation model for anaerobic co-digestion of waste activated sludge and microalgae. Bioresour. Technol. 2017;228:9-17. https://doi.org/10.1016/j.biortech.2016.12.072
- El-Mashad HM, Zhang R. Biogas production from co-digestion of dairy manure and food waste. Bioresour. Technol. 2010;101:4021-4048. https://doi.org/10.1016/j.biortech.2010.01.027
- Chen H, Zhou D, Luo G, Zhang S, Chen J. Macroalgae for biofuels production: Progress and perspectives. Renew. Sust. Energ. Rev. 2015b;47:427-437. https://doi.org/10.1016/j.rser.2015.03.086
- Haider MR, Zeshan, Yousaf S, Malik RN, Visvanathan C. Effect of mixing ratio of food waste and rice husk co-digestion and substrate to inoculum ratio on biogas production. Bioresour. Technol. 2015;190:451-457. https://doi.org/10.1016/j.biortech.2015.02.105
- Li Q, Li H, Wang G, Wang X. Effects of loading rate and temperature on anaerobic co-digestion of food waste and waste activated sludge in a high frequency feeding system, looking in particular at stability and efficiency. Bioresour. Technol. 2017;237:231-239. https://doi.org/10.1016/j.biortech.2017.02.045
- Yun YM, Jung KW, Kim DH, Oh YK, Shin HS. Microalgal biomass as a feedstock for bio-hydrogen production. Int. J. Hydrogen Energ. 2012;37:15533-15539. https://doi.org/10.1016/j.ijhydene.2012.02.017
- Karlsson A, Einarsson P, Schnurer A, Sundberg C, Ejlertsson J, Svensson BH. Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester. J. Biosci. Bioeng. 2012;114:446-452. https://doi.org/10.1016/j.jbiosc.2012.05.010
- Drennan MF, DiStefano TD. High solids co-digestion of food and landscape waste and the potential for ammonia toxicity. Waste Manage. 2014;34:1289-1298. https://doi.org/10.1016/j.wasman.2014.03.019
- Kim DH, Kim SH, Kim HW, Kim MS, Shin HS. Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance. Bioresour. Technol. 2011;102:8501-8506. https://doi.org/10.1016/j.biortech.2011.04.089
- Zhang W, Wei Q, Wu S, et al. Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions. Appl. Energ. 2014;128:175-183. https://doi.org/10.1016/j.apenergy.2014.04.071
- Zhen G, Lu X, Kobayashi T, Li YY, Xu K, Zhao Y. Mesophilic anaerobic co-digestion of waste activated sludge and Egeria densa: Performance assessment and kinetic analysis. Appl. Energ. 2015;148:78-86. https://doi.org/10.1016/j.apenergy.2015.03.038
- Yun YM, Cho SK, Kim HW, Jung KW, Shin HS, Kim DH. Elucidating a synergistic effect of food waste addition on the enhanced anaerobic digestion of waste activated sludge. Korean J. Chem. Eng. 2014;31:1542-1546.
Cited by
- Feasibility Analysis on the Adoption of Decentralized Anaerobic Co-Digestion for the Treatment of Municipal Organic Waste with Energy Recovery in Urban Districts of Metropolitan Areas vol.18, pp.4, 2019, https://doi.org/10.3390/ijerph18041820
- Enhancing biogas production from caribbean pelagic Sargassum utilising hydrothermal pretreatment and anaerobic co-digestion with food waste vol.275, 2021, https://doi.org/10.1016/j.chemosphere.2021.130035