DOI QR코드

DOI QR Code

Characteristics of Sr2Ni1.8Mo0.2O6-δ Anode for Utilization in Methane Fuel Conditions in Solid Oxide Fuel Cells

  • Kim, Jun Ho (School of Chemical Engineering, Chonnam National University) ;
  • Yun, Jeong Woo (School of Chemical Engineering, Chonnam National University)
  • Received : 2019.03.22
  • Accepted : 2019.05.16
  • Published : 2019.09.30

Abstract

In this study, $Sr_2Ni_{1.8}Mo_{0.2}O_{6-{\delta}}$ (SNM) with a double perovskite structure was investigated as an alternative anode for use in the $CH_4$ fuel in solid oxide fuel cells. SNM demonstrates a double perovskite phase over $600^{\circ}C$ and marginal crystallization at higher temperatures. The Ni nanoparticles were exsolved from the SNM anode during the fabrication process. As the SNM anode demonstrates poor electrochemical and electro-catalytic properties in the $H_2$ and $CH_4$ fuels, it was modified by applying a samarium-doped ceria (SDC) coating on its surface to improve the cell performance. As a result of this SDC modification, the cell performance improved from $39.4mW/cm^2$ to $117.7mW/cm^2$ in $H_2$ and from $15.9mW/cm^2$ to $66.6mW/cm^2$ in $CH_4$ at $850^{\circ}C$. The mixed ionic and electronic conductive property of the SDC provided electrochemical oxidation sites that are beyond the triple boundary phase sites in the SNM anode. In addition, the carbon deposition on the SDC thin layer was minimized due to the SDC's excellent oxygen ion conductivity.

Keywords

References

  1. S. A. Saadabadi, A. T. Thattai, L. Fan, R. E. F. Lindeboom, H. Spanjers, P. V. Aravind, Renew. Energ., 2019, 134, 194-214. https://doi.org/10.1016/j.renene.2018.11.028
  2. Fuel Cell Handbook, 7th ed., EG&G Technical Servies, Inc. for NETL of U.S. Dept. of Energy, 2004.
  3. H. Mohammed, A. Al-Othman, P. Nancarrow, M. Tawalbeh, M. E. H. Assad, Energy, 2019, 172, 207-219. https://doi.org/10.1016/j.energy.2019.01.105
  4. A. Arshad, H. M. Ali, A. Habib, M.A. Bashir, M. Jabbal, Y. Yan, Therm. Sci. Eng. Prog., 2018, 9, 308-321. https://doi.org/10.1016/j.tsep.2018.12.008
  5. D.K. Niakolas, Appl. Catal. A-Gen., 2014, 486, 123-142. https://doi.org/10.1016/j.apcata.2014.08.015
  6. Z. U. Din, Z.A. Zainal, Renew. Sust. Energ. Rev., 2017, 72, 1050-1066. https://doi.org/10.1016/j.rser.2016.10.012
  7. A. J. Jacobson, Chem. Mater., 2009, 22(3), 660-674. https://doi.org/10.1021/cm902640j
  8. J. Fergus, R. Hui, X. Li, D. P. Wilkinson, J. Zhang, Solid oxide fuel cells: Materials Properties and Performance, CRC press, 2008.
  9. A.M. Abdalla, S. Hossain, A.T. Azad, P.M.I. Petra, F. Begum, S.G. Eriksson, A.K. Azad, Renew. Sust. Energ. Rev., 2018, 82, 353-368. https://doi.org/10.1016/j.rser.2017.09.046
  10. F.S. Silva, T.M. Souza, Int. J. Hydrogen Energ., 2017, 42(41), 26020-26036. https://doi.org/10.1016/j.ijhydene.2017.08.105
  11. S.Al, G. Zhang, J.Electrochem. Sci. Technol., 2018, 9(3), 212-219. https://doi.org/10.33961/JECST.2018.9.3.212
  12. S.P.S. Shaikh, A. Muchtar, M.R.Somalu, Renew. Sust. Energ. Rev., 2015, 51, 1-8. https://doi.org/10.1016/j.rser.2015.05.069
  13. J.B. Goodenough, Y.H.Huang, J. Power Sources, 2007, 173(1), 1-10. https://doi.org/10.1016/j.jpowsour.2007.08.011
  14. R.J. Gorte, J.M. Vohs, Curr. Opin. Colloid In., 2009, 14(4), 236-244. https://doi.org/10.1016/j.cocis.2009.04.006
  15. B. S. Prakash, S.S. Kumar, S.T. Aruna, Renew. Sust. Energ. Rev., 2014, 36, 149-179. https://doi.org/10.1016/j.rser.2014.04.043
  16. C. Sun, U. Stimming, J. Power Sources, 2007, 171(2), 247-260. https://doi.org/10.1016/j.jpowsour.2007.06.086
  17. H.S. Kim, S.P. Yoon, J.W. Yun, S.A. Song, S.C. Jang, S.W. Nam, Y.G. Shul, Int. J. Hydrog. Energ., 2012, 37(21), 16130-16139. https://doi.org/10.1016/j.ijhydene.2012.08.030
  18. E.K. Park, J.W. Yun, J.Electrochem. Sci. Technol., 2016, 7(1), 33-40. https://doi.org/10.33961/JECST.2016.7.1.33
  19. J.M. Lee, J.W. Yun, Ceram. Int., 2016, 42(7), 8698-8705. https://doi.org/10.1016/j.ceramint.2016.02.104
  20. J.H. Kim, J.W. Yun, J. Electrochem. Sci. Technol., 2018, 9(2), 133-140. https://doi.org/10.5229/JECST.2018.9.2.133
  21. E.K. Park, S. Lee, J.W. Yun, Appl. Surf. Sci., 2018, 429, 171-179. https://doi.org/10.1016/j.apsusc.2017.07.284
  22. M.A. Gwan, J.W. Yun, J. Electroceram., 2018, 40(3), 171-179. https://doi.org/10.1007/s10832-018-0117-2
  23. R.D. Shannon, Acta Crystallogr., 1976, 32(5), 751-767. https://doi.org/10.1107/S0567739476001551
  24. D. Papargyriou, J.T.S. Irvine, Sol. Stat. Ionics, 2016, 288, 120-123. https://doi.org/10.1016/j.ssi.2015.11.007