DOI QR코드

DOI QR Code

RuO2-Doped TiO2 Nanotube Membranes Prepared via a Single-Step/Potential Shock Sequence

  • Yoo, Hyeonseok (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University) ;
  • Seong, Mijeong (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University) ;
  • Choi, Jinsub (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University)
  • Received : 2018.12.03
  • Accepted : 2019.03.05
  • Published : 2019.09.30

Abstract

Anodic $TiO_2$ nanotubes were simultaneously grown and doped with $RuO_2$ by single-step anodization in a negatively-charged $RuO_4{^-}$ precursor. Subsequently, a high positive voltage was imposed on the nanotubes in an $F^-$-based electrolyte (a process referred to as potential shock), which led to the formation of a through-hole $RuO_2$-doped $TiO_2$ nanotube membrane without significant loss of the $RuO_2$ catalyst. XPS results confirmed that the doped Ru metal was converted into $RuO_2$ as the potential shock voltage increased. Further increases in the potential shock voltage led to the formation of $RuO_x/Ru$ in the $TiO_2$ nanotubes. All of our results clearly showed that a through-hole catalyst-doped $TiO_2$ nanotube membrane can be produced by a sequence consisting of single-step anodization and the potential shock process.

Keywords

References

  1. S.P. Albu, A. Ghicov, J.M. Macak, R. Hahn, and P. Schmuki, Nano Lett, 2007, 7(5), 1286-1289. https://doi.org/10.1021/nl070264k
  2. J.W. Ng, X.W. Zhang, T. Zhang, J.-H. Pan, J.-H. Alan Du, and D.D. Sun, J. Chem. Technol. Biot, 2010, 85(8), 1061-1066. https://doi.org/10.1002/jctb.2395
  3. C.-J. Lin, W.-Y. Yu, Y.-T. Lu, and S.-H. Chien, Chem. Commun, 2008, 45, 6031-6033.
  4. J.J. Gong, Y.K. Lai, and C.J. Lin, Electrochim. Acta, 2010, 55(16), 4776-4782. https://doi.org/10.1016/j.electacta.2010.03.055
  5. S. Shin, K. Kim, and J. Choi, Electrochem. Commun, 2013, 36, 88-91. https://doi.org/10.1016/j.elecom.2013.09.016
  6. Q.W. Chen, and D.S. Xu, J. Phys. Chem. C, 2009, 113(15), 6310-6314. https://doi.org/10.1021/jp900336e
  7. B.-X. Lei, J.-Y. Liao, R. Zhang, J. Wang, C.-Y. Su, and D.-B. Kuang, J. Phys. Chem. C, 2010, 114(35), 15228-15233. https://doi.org/10.1021/jp105780v
  8. S.E. Kim, J.H. Lim, S.C. Lee, S.-C. Nam, H.-G. Kang, and J. Choi, Electrochim. Acta, 2008, 53(14), 4846-4851. https://doi.org/10.1016/j.electacta.2008.02.005
  9. B.G. Lee, S.-C. Nam, and J. Choi, Curr. Appl. Phys, 2012, 12(6), 1580-1585. https://doi.org/10.1016/j.cap.2012.05.004
  10. G.F. Ortiz, I. Hanzu, T. Djenizian, P. Lavela, J.L. Tirado, and P. Knauth, Chem. Mater, 2008, 21(1), 63-67. https://doi.org/10.1021/cm801670u
  11. G. Liu, K. Wang, N. Hoivik, and H. Jakobsen, Sol. Energ. Mat. Sol. C, 2012, 98, 24-37. https://doi.org/10.1016/j.solmat.2011.11.004
  12. Q.W. Chen, D.S. Xu, Z.Y. Wu, and Z.F. Liu, Nanotechnology, 2008, 19(36), 365708. https://doi.org/10.1088/0957-4484/19/36/365708
  13. J. Wang, and Z. Lin, Chem. Mater, 2008, 20(4), 1257-1261. https://doi.org/10.1021/cm7028917
  14. K. Kant, and D. Losic, Phys. Status Solidi - R, 2009, 3(5), 139-141. https://doi.org/10.1002/pssr.200903087
  15. Y. Jo, I. Jung, I. Lee, J. Choi, and Y. Tak, Electrochem. Commun, 2010, 12(5), 616-619. https://doi.org/10.1016/j.elecom.2010.02.013
  16. H. Yoo, Y.-W. Choi, and J. Choi, ChemCatChem, 2015, 7(4), 643-647. https://doi.org/10.1002/cctc.201402787
  17. Y. Gim, M. Seong, Y.-W. Choi, and J. Choi, Electrochem. Commun, 2015, 52, 37-40. https://doi.org/10.1016/j.elecom.2015.01.004
  18. S. Kim, H. Yoo, O. Rhee, and J. Choi, J. Phys. Chem. C, 2015, 119(37), 21497-21503. https://doi.org/10.1021/acs.jpcc.5b05790
  19. H. Yoo, K. Oh, Y.-C. Nah, J. Choi, and K. Lee, Electrochem. Comm. 2018, on-line version, DOI: 10.1002/celc.201800981.
  20. J.H. Lim, S.-Y. Hong, S.J. Kang, H.-J. Doh, J. Song, J.R. Choi, K.-H. Chung, and J. Choi, Electrochem. Commun. 2009, 11(11), 2141-2144. https://doi.org/10.1016/j.elecom.2009.09.015
  21. H. Yoo, K. Oh, G. Lee, and J. Choi, J. Electrochem. Soc. 2017, 164(2), H104-H111. https://doi.org/10.1149/2.1201702jes