DOI QR코드

DOI QR Code

LRRK2 and membrane trafficking: nexus of Parkinson's disease

  • Hur, Eun-Mi (Department of Neuroscience, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University) ;
  • Jang, Eun-Hae (Department of Neuroscience, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University) ;
  • Jeong, Ga Ram (Department of Neuroscience, Kyung Hee University) ;
  • Lee, Byoung Dae (Department of Neuroscience, Kyung Hee University)
  • Received : 2019.06.27
  • Published : 2019.09.30

Abstract

Recent evidence from genetics, animal model systems and biochemical studies suggests that defects in membrane trafficking play an important part in the pathophysiology of Parkinson's disease (PD). Mutations in leucine-rich repeat kinase 2 (LRRK2) constitute the most frequent genetic cause of both familial and sporadic PD, and LRRK2 has been suggested as a druggable target for PD. Although the precise physiological function of LRRK2 remains largely unknown, mounting evidence suggests that LRRK2 controls membrane trafficking by interacting with key regulators of the endosomal-lysosomal pathway and synaptic recycling. In this review, we discuss the genetic, biochemical and functional links between LRRK2 and membrane trafficking. Understanding the mechanism by which LRRK2 influences such processes may contribute to the development of disease-modifying therapies for PD.

Keywords

References

  1. Abeliovich A and Gitler AD (2016) Defects in trafficking bridge Parkinson's disease pathology and genetics. Nature 539, 207-216 https://doi.org/10.1038/nature20414
  2. Moss J and Bolam JP (2008) A dopaminergic axon lattice in the striatum and its relationship with cortical and thalamic terminals. J Neurosci 28, 11221-11230 https://doi.org/10.1523/JNEUROSCI.2780-08.2008
  3. Matsuda W, Furuta T, Nakamura KC et al (2009) Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci 29, 444-453 https://doi.org/10.1523/JNEUROSCI.4029-08.2009
  4. Paisan-Ruiz C, Jain S, Evans EW et al (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595-600 https://doi.org/10.1016/j.neuron.2004.10.023
  5. Zimprich A, Biskup S, Leitner P et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601-607 https://doi.org/10.1016/j.neuron.2004.11.005
  6. Funayama M, Hasegawa K, Ohta E et al (2005) An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 family. Ann Neurol 57, 918-921 https://doi.org/10.1002/ana.20484
  7. Nalls MA, Pankratz N, Lill CM et al (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nat Genet 46, 989-993 https://doi.org/10.1038/ng.3043
  8. Lesage S, Ibanez P, Lohmann E et al (2005) G2019S LRRK2 mutation in french and north african families with Parkinson's disease. Ann Neurol 58, 784-787 https://doi.org/10.1002/ana.20636
  9. Benamer HT and de Silva R (2010) LRRK2 G2019S in the North African population: a review. Eur Neurol 63, 321-325 https://doi.org/10.1159/000279653
  10. Cookson MR (2010) The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease. Nat Rev Neurosci 11, 791-797 https://doi.org/10.1038/nrn2935
  11. Paisan-Ruiz C, Lewis PA and Singleton AB (2013) LRRK2: cause, risk, and mechanism. J Parkinsons Dis 3, 85-103 https://doi.org/10.3233/JPD-130192
  12. Wang X, Yan MH, Fujioka H et al (2012) LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet 21, 1931-1944 https://doi.org/10.1093/hmg/dds003
  13. Orenstein SJ, Kuo SH, Tasset I et al (2013) Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 16, 394-406 https://doi.org/10.1038/nn.3350
  14. Parisiadou L, Xie C, Cho HJ et al (2009) Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J Neurosci 29, 13971-13980 https://doi.org/10.1523/JNEUROSCI.3799-09.2009
  15. Martin I, Kim JW, Lee BD et al (2014) Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson's disease. Cell 157, 472-485 https://doi.org/10.1016/j.cell.2014.01.064
  16. Trinh J, Guella I and Farrer MJ (2014) Disease penetrance of late-onset parkinsonism: a meta-analysis. JAMA Neurol 71, 1535-1539 https://doi.org/10.1001/jamaneurol.2014.1909
  17. West AB, Moore DJ, Biskup S et al (2005) Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A 102, 16842-16847 https://doi.org/10.1073/pnas.0507360102
  18. Greggio E, Jain S, Kingsbury A et al (2006) Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis 23, 329-341 https://doi.org/10.1016/j.nbd.2006.04.001
  19. Lee BD, Shin JH, VanKampen J et al (2010) Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson's disease. Nat Med 16, 998-1000 https://doi.org/10.1038/nm.2199
  20. Smith WW, Pei Z, Jiang H, Dawson VL, Dawson TM and Ross CA (2006) Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci 9, 1231-1233 https://doi.org/10.1038/nn1776
  21. West AB, Moore DJ, Choi C et al (2007) Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum Mol Genet 16, 223-232 https://doi.org/10.1093/hmg/ddl471
  22. Lee BD, Dawson VL and Dawson TM (2012) Leucine-rich repeat kinase 2 (LRRK2) as a potential therapeutic target in Parkinson's disease. Trends Pharmacol Sci 33, 365-373 https://doi.org/10.1016/j.tips.2012.04.001
  23. Biskup S, Moore DJ, Celsi F et al (2006) Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol 60, 557-569 https://doi.org/10.1002/ana.21019
  24. Shin N, Jeong H, Kwon J et al (2008) LRRK2 regulates synaptic vesicle endocytosis. Exp Cell Res 314, 2055-2065 https://doi.org/10.1016/j.yexcr.2008.02.015
  25. Piccoli G, Condliffe SB, Bauer M et al (2011) LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool. J Neurosci 31, 2225-2237 https://doi.org/10.1523/JNEUROSCI.3730-10.2011
  26. Alegre-Abarrategui J, Christian H, Lufino MM et al (2009) LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum Mol Genet 18, 4022-4034 https://doi.org/10.1093/hmg/ddp346
  27. Manzoni C, Denny P, Lovering RC and Lewis PA (2015) Computational analysis of the LRRK2 interactome. PeerJ 3, e778 https://doi.org/10.7717/peerj.778
  28. Tong Y, Yamaguchi H, Giaime E et al (2010) Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci U S A 107, 9879-9884 https://doi.org/10.1073/pnas.1004676107
  29. Dodson MW, Zhang T, Jiang C, Chen S and Guo M (2012) Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning. Hum Mol Genet 21, 1350-1363 https://doi.org/10.1093/hmg/ddr573
  30. Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10, 513-525 https://doi.org/10.1038/nrm2728
  31. Hutagalung AH and Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91, 119-149 https://doi.org/10.1152/physrev.00059.2009
  32. Rivero-Rios P, Gomez-Suaga P, Fernandez B et al (2015) Alterations in late endocytic trafficking related to the pathobiology of LRRK2-linked Parkinson's disease. Biochem Soc Trans 43, 390-395 https://doi.org/10.1042/BST20140301
  33. MacLeod DA, Rhinn H, Kuwahara T et al (2013) RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk. Neuron 77, 425-439 https://doi.org/10.1016/j.neuron.2012.11.033
  34. Waschbusch D, Michels H, Strassheim S et al (2014) LRRK2 transport is regulated by its novel interacting partner Rab32. PLoS One 9, e111632 https://doi.org/10.1371/journal.pone.0111632
  35. Beilina A, Rudenko IN, Kaganovich A et al (2014) Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease. Proc Natl Acad Sci U S A 111, 2626-2631 https://doi.org/10.1073/pnas.1318306111
  36. Gomez-Suaga P, Rivero-Rios P, Fdez E et al (2014) LRRK2 delays degradative receptor trafficking by impeding late endosomal budding through decreasing Rab7 activity. Hum Mol Genet 23, 6779-6796 https://doi.org/10.1093/hmg/ddu395
  37. Heo HY, Kim KS and Seol W (2010) Coordinate regulation of neurite outgrowth by LRRK2 and Its interactor, Rab5. Exp Neurobiol 19, 97-105 https://doi.org/10.5607/en.2010.19.2.97
  38. Jeong GR, Jang EH, Bae JR et al (2018) Dysregulated phosphorylation of Rab GTPases by LRRK2 induces neurodegeneration. Mol Neurodegener 13, 8 https://doi.org/10.1186/s13024-018-0240-1
  39. Steger M, Tonelli F, Ito G et al (2016) Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases. Elife 5, 12813 https://doi.org/10.7554/eLife.12813
  40. Liu Z, Bryant N, Kumaran R et al (2018) LRRK2 phosphorylates membrane-bound Rabs and is activated by GTP-bound Rab7L1 to promote recruitment to the trans-Golgi network. Hum Mol Genet 27, 385-395 https://doi.org/10.1093/hmg/ddx410
  41. Steger M, Diez F, Dhekne HS et al (2017) Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis. Elife 6, 31012 https://doi.org/10.7554/eLife.31012
  42. Simon-Sanchez J, Schulte C, Bras JM et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat Genet 41, 1308-1312 https://doi.org/10.1038/ng.487
  43. Pihlstrom L, Rengmark A, Bjornara KA et al (2015) Fine mapping and resequencing of the PARK16 locus in Parkinson's disease. J Hum Genet 60, 357-362 https://doi.org/10.1038/jhg.2015.34
  44. Purlyte E, Dhekne HS, Sarhan AR et al (2018) Rab29 activation of the Parkinson's disease-associated LRRK2 kinase. EMBO J 37, 1-18 https://doi.org/10.15252/embj.201798099
  45. Eguchi T, Kuwahara T, Sakurai M et al (2018) LRRK2 and its substrate Rab GTPases are sequentially targeted onto stressed lysosomes and maintain their homeostasis. Proc Natl Acad Sci U S A 115, E9115-E9124 https://doi.org/10.1073/pnas.1812196115
  46. Mazzulli JR, Zunke F, Isacson O, Studer L and Krainc D (2016) alpha-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models. Proc Natl Acad Sci U S A 113, 1931-1936 https://doi.org/10.1073/pnas.1520335113
  47. Cooper AA, Gitler AD, Cashikar A et al (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science 313, 324-328 https://doi.org/10.1126/science.1129462
  48. Gitler AD, Bevis BJ, Shorter J et al (2008) The Parkinson's disease protein alpha-synuclein disrupts cellular Rab homeostasis. Proc Natl Acad Sci U S A 105, 145-150 https://doi.org/10.1073/pnas.0710685105
  49. Dalfo E, Gomez-Isla T, Rosa JL et al (2004) Abnormal alpha-synuclein interactions with Rab proteins in alpha-synuclein A30P transgenic mice. J Neuropathol Exp Neurol 63, 302-313 https://doi.org/10.1093/jnen/63.4.302
  50. Saheki Y and De Camilli P (2012) Synaptic vesicle endocytosis. Cold Spring Harb Perspect Biol 4, a005645 https://doi.org/10.1101/cshperspect.a005645
  51. Matta S, Van Kolen K, da Cunha R et al (2012) LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis. Neuron 75, 1008-1021 https://doi.org/10.1016/j.neuron.2012.08.022
  52. Gallop JL, Jao CC, Kent HM et al (2006) Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J 25, 2898-2910 https://doi.org/10.1038/sj.emboj.7601174
  53. Masuda M, Takeda S, Sone M et al (2006) Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms. EMBO J 25, 2889-2897 https://doi.org/10.1038/sj.emboj.7601176
  54. Bai J, Hu Z, Dittman JS, Pym EC and Kaplan JM (2010) Endophilin functions as a membrane-bending molecule and is delivered to endocytic zones by exocytosis. Cell 143, 430-441 https://doi.org/10.1016/j.cell.2010.09.024
  55. Milosevic I, Giovedi S, Lou X et al (2011) Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. Neuron 72, 587-601 https://doi.org/10.1016/j.neuron.2011.08.029
  56. Ambroso MR, Hegde BG and Langen R (2014) Endophilin A1 induces different membrane shapes using a conformational switch that is regulated by phosphorylation. Proc Natl Acad Sci U S A 111, 6982-6987 https://doi.org/10.1073/pnas.1402233111
  57. Hill E, van Der Kaay J, Downes CP and Smythe E (2001) The role of dynamin and its binding partners in coated pit invagination and scission. J Cell Biol 152, 309-323 https://doi.org/10.1083/jcb.152.2.309
  58. Verstreken P, Koh TW, Schulze KL et al (2003) Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 40, 733-748 https://doi.org/10.1016/S0896-6273(03)00644-5
  59. Islam MS, Nolte H, Jacob W et al (2016) Human R1441C LRRK2 regulates the synaptic vesicle proteome and phosphoproteome in a Drosophila model of Parkinson's disease. Hum Mol Genet 25, 5365-5382
  60. Edvardson S, Cinnamon Y, Ta-Shma A et al (2012) A deleterious mutation in DNAJC6 encoding the neuronalspecific clathrin-uncoating co-chaperone auxilin, is associated with juvenile parkinsonism. PLoS One 7, e36458 https://doi.org/10.1371/journal.pone.0036458
  61. Koroglu C, Baysal L, Cetinkaya M, Karasoy H and Tolun A (2013) DNAJC6 is responsible for juvenile parkinsonism with phenotypic variability. Parkinsonism Relat Disord 19, 320-324 https://doi.org/10.1016/j.parkreldis.2012.11.006
  62. Nguyen M and Krainc D (2018) LRRK2 phosphorylation of auxilin mediates synaptic defects in dopaminergic neurons from patients with Parkinson's disease. Proc Natl Acad Sci U S A 115, 5576-5581 https://doi.org/10.1073/pnas.1717590115
  63. Belluzzi E, Gonnelli A, Cirnaru MD et al (2016) LRRK2 phosphorylates pre-synaptic N-ethylmaleimide sensitive fusion (NSF) protein enhancing its ATPase activity and SNARE complex disassembling rate. Mol Neurodegener 11, 1 https://doi.org/10.1186/s13024-015-0066-z
  64. Ryu JK, Jahn R and Yoon TY (2016) Review: Progresses in understanding N-ethylmaleimide sensitive factor (NSF) mediated disassembly of SNARE complexes. Biopolymers 105, 518-531 https://doi.org/10.1002/bip.22854
  65. Yu RC, Hanson PI, Jahn R and Brunger AT (1998) Structure of the ATP-dependent oligomerization domain of N-ethylmaleimide sensitive factor complexed with ATP. Nat Struct Biol 5, 803-811 https://doi.org/10.1038/1843
  66. Yun HJ, Park J, Ho DH et al (2013) LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25. Exp Mol Med 45, e36 https://doi.org/10.1038/emm.2013.68
  67. Tian JH, Wu ZX, Unzicker M et al (2005) The role of Snapin in neurosecretion: snapin knock-out mice exhibit impaired calcium-dependent exocytosis of large dense-core vesicles in chromaffin cells. J Neurosci 25, 10546-10555 https://doi.org/10.1523/JNEUROSCI.3275-05.2005
  68. Shahmoradian SH, Lewis AJ, Genoud C et al (2019) Lewy pathology in Parkinson's disease consists of crowded organelles and lipid membranes. Nat Neurosci 22, 1099-1109 https://doi.org/10.1038/s41593-019-0423-2