참고문헌
- Google. http://www.google.com
- Yahoo. http://www.yahoo.com
- M. S. Seigel. (2013). Confidence Estimation for Automatic Speech Recognition Hypotheses. Doctoral dissertation, St Edmund's College.
- J. C. Chappelier, M. Rajman, R. Aragues. & A. Rozenknop. (1999). Lattice Parsing for Speech Recognition. Traitement Automatique du Langage Naturel, 95-104.
- A. Graves. & N. Jaitly. (2014). Towards End-to-End Speech Recognition with Recurrent Neural Networks. Proceedings of the 31th International Conference on Machine Learning, 1764-1772.
- H. Khouzaimi, R. Laroche & F. Lefevre. (2014). An Easy Method to Make Dialogue Systems Incremental. Proceedings of the 15th Annual Meeting of the Special Interest Group on Discourse and Dialogue, 98-107.
- C. Shi, M. Verhagen & J. Pustejovsky. (2014). A Conceptual Framework of Online Natural Language Processing Pipeline Application. Proceedings of the Workshop on Open Infrastructures and Analysis Frameworks for HLT, 53-59.
- X. Liu., R. Sarikaya., L. Zhao., Y. Ni. & Y. C. Pan. (2016). Personalized Natural Language Understanding. Proceedings of the 17th Annual Conference of the International Speech Communication Association, 1146-1150.
- D. Wang., D. H. Tur & G. Tur. (2013). Understanding Computer-Directed Utterances in Multi-User Dialog Systems. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 8377-8381.
- P. Xu. & R. Sarikaya. (2014). Contextual Domain Classification in Spoken Language Understanding Systems Using Recurrent Neural Network. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 136-140.
- C. Lee., S. Jung., S. Kim & G. G. Lee. (2009). Example-Based Dialog Modeling for Practical Multi-Domain Dialog System. Speech Communication, 51, 466-484. https://doi.org/10.1016/j.specom.2009.01.008
- R. Meena. (2016). Data-Driven Methods for Spoken Dialogue Systems. Doctoral dissertation, KTH Royal Institute of Technology.
- B. E. Boser, I. M. Guyon & V. N. Vapnik. (1992). A Training Algorithm For Optimal Margin Classifiers. Proceedings of the fifth Annual Workshop on Computational Learning Theory, 144-152.
- G. Tur, A. Deoras & D. Hakkani-Tur. (2014). Detecting Out-Of-Domain Utterances Addressed to A Virtual Personal Assistant. Proceedings of the 15th Annual Conference of the International Speech Communication Association, 283-287.
- E. Shriberg, A. Stolcke, D. Hakkani-Tur & L. Heck. (2012). Learning When to Listen: Detecting System-Addressed Speech in Human-Human-Computer Dialog. Proceedings of the 13th Annual Conference of the International Speech Communication Association, 334-337.
- A. Stolcke et al. (2000). Dialogue Act Modeling For Automatic Tagging and Recognition of Conversational Speech. Computational Linguistics, 26(3), 339-373. https://doi.org/10.1162/089120100561737
- M. Core. & J. Allen. (1997). Coding Dialogs With the DAMSL Annotation Scheme. Proceedings of the Working Notes of the AAAI Fall Symposium on Communicative Action in Humans and Machines.
- I. R. Lane., T. Kawahara., T. Matsui. & S. Nakamura. (2004). Out-Of-Domain Detection Based On Confidence Measures From Multiple Topic Classification. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, 757-760.
- I. R. Lane., T. Kawahara., T. Matsui. & S. Nakamura. (2004). Topic Classification and Verification Modeling For Out-Of-Domain Utterance Detection. Proceedings of the 8th International Conference on Spoken Language Processing.
- I. R. Lane. & T. Kawahara. (2005). Incorporating Dialogue Context and Topic Clustering in Out-of-Domain Detection. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, 1045-1048.
- X. Zhang., J. Zhao. & Y. Lecun. (2015). Character-Level Convolutional Networks for Text Classification. Proceedings of the 28th International Conference on Neural Information Processing Systems, 649-657.
- Y. Fujita. S. Takeuchi, H. Kawanami, T. Matsui, H. Saruwatari & K. Shikano. (2011). Out-of-Task Utterance Detection Based on Bag-of-Words Using Automatic Speech Recognition Results. Proceedings of the third Annual Summit and Conference of Asia-Pacific Signal and Information Processing Association.
- Y. S. Jeong. (2017). Experimental Analysis for Out-Of-Domain Detection Using Features of Word Positions in Sentence. Proceedings of the Spring Conference of Korean Society for Internet Information, 18(1).
- Wordnet. https://wordnet.princeton.edu/
- D. Hogan, J. Leveling, H. Wang, P. Ferguson & C. Gurrin. (2013). SMS Normalisation, Retrieval and Out-of-Domain Detection Approaches for SMS-Based FAQ Retrieval. Multilingual Information Access in South Asian Languages, 184-196.
- S. Ryu, D. Lee, G. G. Lee, K. Kim & H. Noh. (2014). Exploiting Out-Of-Vocabulary Words For Out-Of-Domain Detection in Dialog Systems. Proceedings of the International Conference on Big Data and Smart Computing, 165-168.
- M. Nakano, S. Sato, K. Komatani, K. Matsuyama, K. Funakoshi & H. G. Okuno. (2011). A Two-Stage Domain Selection Framework for Extensible Multi-Domain Spoken Dialogue Systems. Proceedings of the 12th Annual Meeting of the Special Interest Group on Discourse and Dialogue, 18-29.
- Springer. (2003). The Elements of Statistical Learning. Berlin: T. Hastie., R. Tibshirani. & J. Friedman.
- S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer & R. Harshman. (1990). Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science, 41(6), 391-407. https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
- D. A. Freedman. (2009). Statistical Models: Theory and Practice. Cambridge University Press.
- A. L. Berger, S. A. D. Pietra & V. J. D. Pietra. (1996). A Maximum Entropy Approach to Natural Language Processing. Computational Linguistics, 22(1), 39-71.
- S. Ryu, S. Kim, J. Choi, H. Yu & G. G. Lee. (2017). Neural Sentence Embedding Using Only In-Domain Sentences for Out-Of-Domain Sentence Detection in Dialog Systems. Pattern Recognition Letter, 88, 26-32. https://doi.org/10.1016/j.patrec.2017.01.008
- S. Hochreiter. & J. Schmidhuber. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- J. K. Kim. & Y. B. Kim. (2018). Joint Learning of Domain Classification and Out-of-Domain Detection with Dynamic Class Weighting for Satisficing False Acceptance Rates. Proceedings of 19th Annual Conference of the International Speech Communication Association, 556-560.
- Y. S. Jeong. (2018). Out-Of-Domain Detection Using Hierarchical Dirichlet Process. Journal of The Korea Society of Computer and Information, 23(1), 17-24. https://doi.org/10.9708/JKSCI.2018.23.01.017