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SPECTRUM CONVOLUTION OF FULL

TRANSFORMATION SEMIGROUP

A. O. Adeniji

Abstract. In this paper, some results are obtained from studying
convolution on the spectrum of full transformation semigroup and
some of its subsemigroups using Cayley’s table. The shift of α
determines its eigenvalues and one-dimensional linear convolution
is complex in Symmetric group.

1. Introduction

Let X be a finite set of natural numbers and let IDTn be the identity
difference full transformation semigroup of all self - maps of X with the
condition
|w+(α)−w−(α)| ≤ 1, w+(α)=max(Imα)[w−(α) = min(Imα)][1, 11].

It is possible to extend the notion of identity difference transformation
semigroup using this condition |w+(α)− w−(α)| ≤ n − 1 for each n.
This means that, it is a semigroup devoid of the identity element as
determined by the upper bound of the condition earlier stated.

For instance, when n = 3 in IDTn then |w+(α)− w−(α)| ≤ 1 implies
that IDT3 has no identity element.

Many semigroup theorists like [4, 5, 6, 7, 8, 10] have vastly worked on
full transformation semigroups and its related subsemigroups. IDTn is a
new subsemigroup of full transformation semigroup which is interesting
to study.

Howie [4, 5] defined the following subsets associated with an element
α of Tn:
S(α) = {x ∈ X : xα 6= x},
Z(α) = X\Xα and
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C(α) =
⋃
{yα−1 : y ∈ Xα and

∣∣yα−1∣∣ ≥ 2}.
The numbers s(α) = |S(α)| , z(α) = |Z(α)| and c(α) = |C(α)| are

called respectively, the shift, the defect and the collapse of α. The
length of image of α is denoted by | im(α) |.

The spectrum of a square matrix A is denoted by σ(A) and spectral
radius of A, denoted by ρ(A) is defined as:

ρ(A) = max{|λ| : λ ∈ σ(A)}.
The spectrum of a matrix was used by Michael and Liancheng, [9]

to determine its stability. In this paper, we use spectrum to study the
convolutionary behaviour of transformation semigroups.

An eigenvalue of a square matrix A that is larger in absolute value
than any other eigenvalue is called the dominant eigenvalue; a corre-
sponding eigenvector is called a dominant eigenvector.

The kernel of α ∈ S is the equivalence relation, kerα on S given by

kerα = {(x, y) ∈ X ×X : xα = yα}.
The matrix representation of each element α in a semigroup is defined

in [2] as follows: Let S denote a transformation semigroup and φ(α) =

(mi, j)
n
i,j=1 represent the nXn matrix such that mi, j = {1, α(j)=i0, otherwise.

One dimensional linear convolution of a N - point vector, x and a M
- point vector, y has length N +M − 1. Each element of Tn:r is written
as a n - dimensional row vector with the Cayley’s table drawn to obtain
the linear convolution C(Tn:r), 1 ≤ r ≤ nn, n ≥ 2.

In signal processing, the basic assumption is that signals and filter-
impulse responses are time series, with a non-zero constant time-duration,
called the sampling rate separating consecutive samples.

A mathematically convenient (and legitimate) way of representing
this notion is to write a signal as a polynomial where the time-series rep-
resents the coefficients of the polynomial. If the sequence (aka signal or
filter) x = (x0, x1, x2, ...) interacts with the sequence y = (y0, y1, y2, ...)
in the manner of a ’linear filter’, then the resulting sequence, w =
(w0, w1, w2, ...) will be such that the effect at the ith index (visualize
it as, say, time interval) of w will be the sum of individual ’effects’ of all
pairs xk, yj such that j + k = i. This idea is used as an application in
transformation semigroup using its spectrum, which yield results that
are useful in solving problems related to sequences of numbers.

The aim of this paper is to generalise the spectrum of each element
in a semigroup by inspection, using the shift of the element and to study
Green’s relations on IDTn.
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2. Linear Convolution of Full Transformation Semigroup

Cayley table describes the structure of a finite set of elements by
arranging all the possible products in a square table reminding of an
addition or multiplication table. In this work, Cayley’s table is used to
obtain the convolution of spectrum of each element.

The following theorem explains the convolution defined on full trans-
formation semigroup. It describes what to expect in the convolution of
spectrum of elements of a transformation semigroup.

Theorem 2.1. Let x0, x1, . . . xr ∈ Tn:r, 1 ≤ r ≤ nn such that x0 =
y0, x1 = y1, . . . xr = yr. Then the convolution C(Tn:r) is

wt =
t∑

k=0

xkyt−k, 0 ≤ t ≤ 2n− 2,

where |w(t)| = N +M −1 and x0 = 0 for any p > k, yq = 0 for q > t−k.

Proof. From Cayley’s table, w0 = x0y0, w1 = x0y1 +x1y0, . . . , wt−1 =
x0yt−1 + x1yt−2 + . . . xt−1y0. Thus, wt of Tn:r is

∑t
k=0 xkyt−k. This

corresponds to MATLAB command, conv(s, s) to obtain the convolution
of s, where s is the spectrum of Tn:r for each r.

Examples of convolution on some elements of T3:

Example 2.2. Calculate the (wt) of T3:16.

Solution:
The cardinality of T3 is 27, that is r = 1, 2, . . . 27.
σ(T3:16) = [−0.5000 + 0.8660i − 0.5000− 0.8660i 1.0000] and
wt of σ(T3:16) = [−0.5000− 0.8660i 1.9999 − 1.5000 + 2.5980i −

1.0000− 1.7320i 1.0000].

Example 2.3. Calculate the (wt) of T3:8.

Solution:
σ(T3:8) = [−1 1 1].
The Cayley table yields wt of σ(T3:8) = [1 − 2 − 1 2 1]. This

can be explained further as follows:
. -1 1 1
-1 1 -1 -1
1 -1 1 1
1 -1 1 1
Table 1:Cayley’s table of σ(T3:8) with reverse diagonal addition for

its wt
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2.1. Some Results on Spectrum of IDTn

Next theorem describes the relationship between shift of α and its
spectrum.

Theorem 2.4. Let Λ denote the interval of eigenvalues, that is Λ =
a ≤ λ ≤ b, α ∈ IDTn and S(α) = {x ∈ X : xα 6= x}. Then |S(α)|
directly determines Λ.

Proof. Let f(α) = {x ∈ X : xα = x}. If |f(α)| = n then |S(α)| = 0
but for IDTn, |S(α)| ≤ n and never zero for n > 2. The eigenvalues of
α are obtained either by direct calculation or with ease using MATLAB
commands. If S(α) = n and α is such that, α(i) = j and α(j) = i, then
the number of times swapping occurs, determines the number of −1 that
are generated as eigenvalues of α. That is, if iα = j and jα = i appears
once in α, it follows that −1 is an eigenvalue of α.

If iα = j and jα = i occur twice in α, then −1 occur twice as
eigenvalues. The interval of such eigenvalues is given as Λ = [−1, 1].
If |S(α)| < n then |f(α)| < n and Λ = [0, 1]. Hence, the nature and
interval of eigenvalues can be determined using |S(α)|.

Proposition 2.5. Let α be an element of IDTn and let ρ(α) =
max{|λ| : λ ∈ σ(α)}. Then ρ(α) = 1, for n ≥ 2.

Proof. The Identity difference transformation semigroup, IDTn has
max |(Imα)| = 2 and min |(Imα)| = 1.
Let λ ∈ σ(α). For each α ∈ IDTn, the upper bound for σ(α) is 1.

Hence ρ(α) is 1, for n ≥ 2.

Lemma 2.6. Let n ≥ 2 and let H =
∑n

i=1 λi. Then 0 ≤ H ≤ 2.

Proof. IDTn is a semigroup with |w+(α)− w−(α)| ≤ 1 and from
proposition 4, |S(α)| ≤ n and never zero for n > 2. As f(α) ↑, S(α) ↓
resulting into H ↑. Here, since f(α) 6= n implies that H 6= n from the
fact that |w+(α)| = 2.

The following theorem derives formula for the sum of spectrum, H =
0, 1, 2 in IDTn.

Theorem 2.7. Let n ≥ 2 and let H =
∑n

i=1 λi. When H = 0, |H| =
(n− 1)2n−2; when H = 1, |H| = n+ (n− 1)(2n − 2)− (n− 1)2n−1 and
when H = 2, |H| = (n− 1)2n−2.

Proof. Lemma 6 shows that H is nonnegative with 2 as upper bound.
The cardinality of each H is known by counting and enumeration.
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Next theorem derives formular for idempotent elements when convo-
luted over a number of times, which is the binomial coefficients of every
2n - step.

Theorem 2.8. Let α be idempotent. Then

[σ(α)]2n = [conv(σ(α), σ(α))]n =
2n!

k!(2n− k)!
, k = 0, 1, . . . 2n.

Proof. Consider the function f(y) = (x+y)2n. The coefficients of f(y)
is equivalent to the binomial coefficients of every 2n - step. Hence the
triangle formed has the formula derived as 2n!

k!(2n−k)! , k = 0, 1, . . . 2n,≡
22n. This is true for each idempotent element of IDTn.

The following figures are examples of convolution of spectrum of
idempotents in IDTn:

Figure 1: Convolution of spectrum for λ = 1, 1, when n = 2.
1 2 1

1 4 6 4 1
1 8 28 56 70 56 28 8 1

1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1

Figure 2: Convolution of spectrum for λ = 1, 0, 1 when n = 3.
1 0 2 0 1

1 0 4 0 6 0 4 0 1
1 0 8 0 28 0 56 0 70 0 56 0 28 0 8 0 1

1 0 16 0 120 0 560 0 1820 0 4368 0 8008 0 11440 0 12870 0 11440 0 8008 0 4368 0 1820 0 560 0
120 0 16 0 1

Figure 3 : Convolution of spectrum for λ = 1, 1, 0, when n = 2.
1 2 1 0 0

1 4 6 4 1 0 0 0 0
1 8 28 56 70 56 28 8 1 0 0 0 0 0 0 0 0

1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0

2.2. Some Results on Spectrum of Tn

The spectrum composition of full transformation semigroup, Tn for
n ≥ 2 is different from that of identity difference transformation semi-
group, IDTn. The following results are obtained on the study of the
behaviour of spectrum on full transformation semigroup, Tn.

Lemma 2.9. Element that has at most one fixed point and is singular
has spectrum [1, 0, 0, 0, 0, . . .] with n− 1 zeros.

Proof. The number of times fix points appear in an element, deter-
mines the number of 1’s in spectrum balanced up with zeros as eigen-
values. The occurrence of fix points n− times in an element implies
n−times occurrence of 1′s in spectrum and no zero eigenvalue. If an
element has n − 1 fixed points in a singular transformation semigroup,
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then such an element has n− 1, 1′s in spectrum and only one zero. De-
ductively, element with one fixed point has only 1 in the spectrum with
n− 1 zeros.

The complexity of the convolution of spectrum of elements of a sym-
metric group is in a theorem as follows:

Theorem 2.10. Elements in Symmetric group have complex convo-
lution.

Proof. The spectrum of symmetric group mixes both the real and
complex numbers being a permutation group. Hence the convolution
also mixes both real and complex numbers.

Theorem 2.11. Conjugacy classes of a symmetric group have the
same spectrum each.

Proof. Conjugacy preserves spectrum and the corresponding convo-
lution.

Theorem 2.12. The convolution of identity elements forms symmet-
rical pyramid of numbers.

Proof. The implication of Lemma 6 is that an identity element has
1′s only in the spectrum. C(Tn:r) for each n where r is an identity is
obtained as explained in theorem 1 above. Since each n has one identity
element, the pyramid has n as its line of symmetry. This is seen in the
figure below:

Figure 4: Convolution of identity elements in symmetric group for
n = 2, 3, . . . 10.

1 2 1
1 2 3 2 1

1 2 3 4 3 2 1
1 2 3 4 5 4 3 2 1

1 2 3 4 5 6 5 4 3 2 1
1 2 3 4 5 6 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 2 1

The sum of each step in figure 4 is n2, n = 2, 3, . . . .
Other results are as follows:
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• Sum of convolution of positive - valued spectrum is a square of the
sum of spectrum.
• Sum of convolution of convolution always give the square of the

sum of preceeding convolution.
• Sum of spectrum with integer values is equivalent to sum of its

convolution.
Example: An element of IDTn has the spectrum [−1, 0, 1],

sum of which is 0.Its first convolution is −1,−1, 2, 1,−1, whose
sum is also 0. The second convolution is 1, 2,−3,−6, 4, 6,−3,−2, 1
with sum equal to zero.

2.3. Green’s Relation on IDTn

The relations L,R,H,D and J on the semigroup S are called Green’s
relations as introduced in [3]. An equivalence L on S is defined by the
rule that aLb if and only if a and b generate the same principal left ideal,
that is, if and only if S1a = S1b. Similarly, the equivalence R is defined
by the rule that, aRb if and only if aS1 = bS1.

The minimum equivalence relation on S which contains both R and
L is called the D− relation. The intersection of two equivalence rela-
tions is always an equivalence relation. H−relation is defined to be the
intersection of R and L. H(a) denotes the H−class of an element a.
Elements a and b are J− equivalent provided that they generate the
same principal two - sided ideal, that is, S1aS1 = S1bS1. Also, J(a)
denotes the J−class of an element a[2].

Composition of mapping on elements in each L−related class natu-
rally yields elements whose | im(α) |= 1.

The following results are obtained on Green’s relation in IDTn:

Theorem 2.13. Let X = 1, 2, 3, . . . n. The semigroup IDTn contains
2n− 1 different L−classes, 2n−1 different R−classes and n−different J-
classes.

Proof. Let R,L and J− denote the R−class, L−class and J−class of
IDTn. Each L−class is a structure of the elements with the same image
as subset of X. That is, αLβ if im(α) = im(β) ⊆ X. For each α ∈
IDTn, im(α) = {i, i + 1}, i = 0, 1, 2, . . . n − 1. In this semigroup, image
of an element α, can only assume two consecutive numbers. Hence, there
are 2n−1, L−classes. R−classes follow the same argument of proof with
L−classes, only that the structure of R−related elements is the kernel
of α.
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From Green’s definition of J−classes, in this study J−classes are
the L−related elements for elements with | im(α) |> 1. Elements with
| im(α) |= 1 form a J−class and hence the proof.

Theorem 2.14. Let Dk denote each of the D−classes in IDTn for
each k, n ∈ N Then IDTn has only two D−classes.

Proof. A rectangular table shown below conveniently shows that the
rows correspond to R−classes and the column correspond to L−classes.
The length of image of α, | im(α) | can assume either 1 or 2 since
im(α) = {i, i + 1}, i = 0, 1, 2, . . . n − 1. Hence there are two D−classes
in IDTn for all n.

Table1 : TheD − ClassesofIDTn
D1=
L\R {1, 2} {2, 3} {3, 4}
123/4 (1112), (2221) (2223), (3332) (3334), (4443)
124/3 (1121), (2212) (2232), (3323) (3343), (4434)
134/2 (1211), (2122) (2322), (3233) (3433), (4344)
1/234 (1222), (2111) (2333), (3222) (3444), (4333)
13/24 (1212), (2121) (2323), (3232) (3434), (4343)
12/34 (1122), (2211) (2233), (3322) (3344), (4433)
14/23 (1221), (2112) (2332), (3223) (3443), (4334)
D2 =
L\R {1} {2} {3} {4}
1234 (1111) (2222) (3333) (4444)

. H−classes are the intersection of L and R.
The following results are obtained on the L−related elements of

IDTn :

Lemma 2.15. Each L−related elements is a subsemigroup.

Proof. Let La denotes each group of elements that are L−related for
each a ∈ N . Since IDTn is

a semigroup satisfying the condition |w+(α)− w−(α)| ≤ 1
∀α, β ∈ IDTn and for x, y, z ∈ La, x ∗ (y ∗ z) = (x ∗ y) ∗ z ∈ La, then

L−related elements is a subsemigorup for each im(α) = im(β).

Theorem 2.16. Let La denotes each group of elements that are
L−related and Ra denotes each group of elements that are R−related
for each a ∈ N , then La contains a left zero semigroup and Ra contains
a right zero semigroup.
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Proof. Let a, b ∈ La such that a2 = a and b2 = b. It is obtained
that the idempotent elements a, b implies ab = a. Hence the idempotent
elements in La is a left zero semigroup. Also, let a, b ∈ Ra such that
a2 = a and b2 = b. It is obtained that the idempotent elements a, b
implies ab = b. Hence the idempotent elements in Ra is a right zero
semigroup.

Conclusion

It has been shown that the convolution of spectrum of a transforma-
tion semigroup is a concept that generates new sequences that can be
used to solve problems related to sequences of numbers and supports
existing ones like the 2n- step binomial coeffients. The study can be
applied to other transformation semigroups and series of numbers.
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