DOI QR코드

DOI QR Code

Effect of soaking temperature on soaking characteristics of soybean (Glycine max) during rehydration process

콩의 수화 공정에서 수화 온도에 따른 콩(Glycine max)의 수화 및 단백질 용출 특성

  • Park, Hyeon Woo (Department of Food Science and Biotechnology, College of Agricultural and Life Science, Kangwon National University) ;
  • Han, Won Young (Department of Functional crop, National Institute of Crop Science Milyang) ;
  • Yoon, Won Byong (Department of Food Science and Biotechnology, College of Agricultural and Life Science, Kangwon National University)
  • Received : 2019.07.14
  • Accepted : 2019.08.05
  • Published : 2019.09.30

Abstract

The effect of soaking temperature on the moisture uptake and the protein loss of soybeans during soaking process investigated. As the soaking temperature increased, the soaking rate significantly increased and Peleg model was suitable for describing the soaking characteristics of the soybean with high $R^2$ values (>0.991). The soaking time to achieve the target moisture content of soybean (130%) was estimated to be 12.6, 3.11 and 2.31 h at 25, 35 and $45^{\circ}C$, respectively. Peleg model well described the protein loss kinetics of soybean during soaking with high $R^2$ values (>0.941). The results showed that the protein loss of soybean at the target moisture content were 35.2, 93.1 and 103.0 mg/g at 25, 35 and $45^{\circ}C$, respectively. In this study, the optimum soaking condition for quality of soybean was 12.6 h of soaking time at $25^{\circ}C$.

콩의 수화 공정에서 수화 온도에 따른 수분함량의 변화 및 단백질 용출을 분석하기 위하여 콩의 수화 특성 및 단백질 용출특성을 확인하였다. 수화 온도가 증가함에 따라 콩의 수화 속도는 증가하는 경향을 나타내었으며, 이러한 수화 특성이 Peleg 모델을 통해 분석되었다($R^2>991$). 초기수분함량으로부터 목표수분함량(130%)까지 수화시키기 위해 25, 35 그리고 $45^{\circ}C$ 수화에서 필요한 수화시간은 각각 12.6, 3.11, 그리고 2.31시간을 나타내어 수화 온도가 증가함에 따라 목표함량에 도달하기 위한 수화시간이 급격히 짧아지는 것을 확인할 수 있었다. 수화공정에 따른 콩의 품질을 분석하기 위해 수화에 따른 단백질 용출량 또한 확인하였으며, 이 또한 Peleg 모델을 이용하여 분석하였다($R^2>0.941$). 단백질 용출 속도는 수화 온도가 증가함에 따라 증가하는 경향을 나타내었으며, 수화 온도가 증가함에 따라 수화에 필요한 시간도 줄어들지만 그에 따른 단백질 용출량 또한 증가하는 것을 확인할 수 있었다. 수분함량과 단백질 용출을 분석하기 위해 개발된 두 모델을 이용하여 목표수분함량까지 수화하였을 때의 콩의 단백질 용출량을 분석하였으며, 25, 35 그리고 $45^{\circ}C$에서 각각 35.2, 93.1 그리고 103.0 mg/g을 나타내어, $25^{\circ}C$의 수화온도에서 12.6시간의 수화시간이 콩의 품질을 고려한 최적 수화공정임을 확인하였다.

Keywords

References

  1. Kwon SH (1972) Origin and importance of protein and oil of Korean soybean. Korean J Food Sci Technol 4(2): 158-161
  2. Park HW, Yoon WB (2019) Prediction of the intermittent drying behavior of soybeans [Glycine max (L.)] using novel multilayerd mass transfer simulation with an image analysis. Drying Technol 37(10):1228-1238 https://doi.org/10.1080/07373937.2018.1493691
  3. Park HW, Han WY, Yoon WB (2018) Drying characteristics of soybean (Glycine max) using continuous drying and intermittent drying. Int J Food Eng 14(9-10)
  4. Rafiee S, Sharifi M, Keyhani A, Omid M, Jafari A, Mohtsebi S, Mobli H (2010) Modeling effective moisture diffusivity of orange slice (Thompson Cv.). Int J Food Prop 13(1): 32-40 https://doi.org/10.1080/10942910802144345
  5. Soponronnarit S, Swasdisevi T, Wetchacama S, Wutiwiwatchai W (2001) Fluidised bed drying of soybeans. J Stored Prod Res 37(2): 133-151 https://doi.org/10.1016/S0022-474X(00)00015-1
  6. Pan Z, Tangratanavalee W (2003) Characteristics of soybean as affected by soaking conditions. LWT-Food Sci Technol 36: 143-151 https://doi.org/10.1016/S0023-6438(02)00202-5
  7. Park HW, Yoon WB (2018) Development of a novel image analysis technique to detect the moisture diffusion of soybeans [Glycine max (L.)] during rehydration using a mass transfer simulation model. Food Bioprocess Tech 11(10): 1887-1894 https://doi.org/10.1007/s11947-018-2150-1
  8. Seo J, Lee S (2004) Production of fibrinolytic enzyme from soybean grits fermented by Bacillus firmus NA-1. J Med Food 7(4): 442-449 https://doi.org/10.1089/jmf.2004.7.442
  9. Yilbas BS, Hussain MM, Dincer I (2003) Heat and moisture diffusion in slab products to convective boundary conditions. Heat Mass Transfer 39:471-476 https://doi.org/10.1007/s00231-002-0323-x
  10. Lima FS, Kurozawa LE, Ida EL (2014) The effects of soybean soaking on grain properties and isoflavones loss. LWT-Food Sci Technol 59(2):1274-1282 https://doi.org/10.1016/j.lwt.2014.04.032
  11. AOAC (1990) Official methods of Analysis, 15th ed. Association of Official Analytical Chemists: Washington, D.C., USA
  12. Bradford M (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  13. Guine RPF, Fernandes RMC (2006) Analysis of the drying kinetics of chestnuts. J Food Eng 76: 460-467 https://doi.org/10.1016/j.jfoodeng.2005.04.063
  14. Peleg M (1988) An empirical model for description of moisture sorption curves. J Food Sci 41: 57-72 https://doi.org/10.1111/j.1365-2621.1976.tb01100.x
  15. Rafiq A, Chowdhary J, Hazarika MK, Makroo HA (2015) Temperature dependence on hydration kinetic model parameters during rehydration of parboiled rice. J Food Sci Technol 52(9): 6090-6094 https://doi.org/10.1007/s13197-015-1790-7
  16. Marques BC, Jorge LMM, Jorge RMM (2016) Chemical properties and water absorption kinetics of transgenic corn grain (2B587 Hx) and its conventional isoline (2B587). J Cereal Sci 71: 93-98 https://doi.org/10.1016/j.jcs.2016.08.005
  17. Abu-Ghannam N, McKenna B (1997) Hydration kinetics of red kidney beans. J Food Sci 62(3): 520-523 https://doi.org/10.1111/j.1365-2621.1997.tb04420.x
  18. Jideani VA, Mpotokwana SM (2009) Modeling of water absorption of Botswana Bambara varieties using Peleg's equation. J Food Eng 92(2):182-188 https://doi.org/10.1016/j.jfoodeng.2008.10.040
  19. Seyhan-Gurtas F, Mehmet AK, Evranuz OE (2001) Water diffusion coefficients of selected legumes grown in Turkey as affected by temperature and variety. Turk J Agric For 25(5): 297-304
  20. Sopade PA, Ajisegiri ES, Badau MH (1992) The use of Peleg's equation in some cereal grains during soaking. J Food Eng, 15: 269-283 https://doi.org/10.1016/0260-8774(92)90010-4