Acknowledgement
Supported by : Iranian National Science Foundation (INSF)
References
- Akavci, S.S. (2016), "Mechanical behavior of functionally graded sandwich plates on elastic foundation", Compos. Part B: Eng., 96, 136-152. https://doi.org/10.1016/j.compositesb.2016.04.035
- Alankaya, V. (2017), "Analytical study on the mechanical performance of composite sandwich shells for dielectric radar domes", J. Sandw. Struct. Mater., 19(1), 108-130. https://doi.org/10.1177/1099636215613296
- Arani, A.G., Hashemian, M., Loghman, A. and Mohammadimehr, M. (2011), "Study of dynamic stability of the double-walled carbon nanotube under axial loading embedded in an elastic medium by the energy method", J. Appl. Mech. Tech. Phys., 52(5), 815-824. https://doi.org/10.1134/S0021894411050178
- Arani, A.G., Haghparast, E. and Zarei, H.B.A. (2016), "Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation", Struct. Eng. Mech., Int. J., 57(1), 105-126. https://doi.org/10.12989/sem.2016.57.1.105
- Arefi, M. and Zenkour, A.M. (2018), "Size-dependent vibration and electro-magneto-elastic bending responses of sandwich piezomagnetic curved nanobeams", Steel Compos. Struct., Int. J., 29(5), 579-590. https://doi.org/10.12989/scs.2018.29.5.579
- Beheshti-Aval, S. and Lezgy-Nazargah, M. (2012), "A coupled refined high-order global-local theory and finite element model for static electromechanical response of smart multilayered/sandwich beams", Arch. Appl. Mech., 82(12), 1709-1752. https://doi.org/10.1007/s00419-012-0621-9
- Beheshti-Aval, S. and Lezgy-Nazargah, M. (2013), "Coupled refined layerwise theory for dynamic free and forced response of piezoelectric laminated composite and sandwich beams", Meccanica, 48(6), 1479-1500. https://doi.org/10.1007/s11012-012-9679-2
- Belyaev, A.K., Fedotov, A.V., Irschik, H., Nader, M., Polyanskiy, V.A. and Smirnova, N.A. (2017), "Experimental study of local and modal approaches to active vibration control of elastic systems", Struct. Control Health Monitor., 25(2), 10-30. https://doi.org/10.1002/stc.2105
- Bhardwaj, G., Upadhyay, A.K. and Pandey, R. (2013), "Non-linear flexural and dynamic response of CNT reinforced laminated composite plates", Compos. Part B., 45, 89-100. https://doi.org/10.1016/j.compositesb.2012.09.004
- Bitaraf, M., Ozbulut, O.E., Hurlebaus, S. and Barroso, L. (2010), "Application of semi active control strategies for seismic protection of buildings with MR dampers", Eng. Struct., 32(10), 3040-3047. https://doi.org/10.1016/j.engstruct.2010.05.023
- Botta, F. and Toccaceli, F. (2018), "Piezoelectric plate's distribution for active control of torsional vibrations", Actuators, 7(2), 23-40. https://doi.org/10.3390/act7020023
- Chhabra, D., Narwal, K. and Singh, P. (2012), "Design and analysis of piezoelectric smart beam for active vibration control", Int. J. Adv. Res. Technol., 1(1), 1-5.
- Choi, I., Kim, J.G., Seo, I.S. and Lee, D.G. (2012), "Radar absorbing sandwich construction composed of CNT, PMI foam and carbon/epoxy composite", Compos. Struct., 94(9), 3002-3008. https://doi.org/10.1016/j.compstruct.2012.04.009
- Collina, A., Facchinetti, A., Fossati, F. and Resta, F. (2005), "An application of active control to the collector of an high-speed pantograph: simulation and laboratory tests", Proceedings of the 44th IEEE Conference on Decision and Control.
- Chuaqui, T.R.C., Roque1, C.M.C. and Ribeiro, P. (2018), "Active vibration control of piezoelectric smart beams with radial basis function generated finite difference collocation method", J. Intel. Mater. Syst. Struct., 29(13), 2728-2743. https://doi.org/10.1177/1045389X18778363
- Damanpack, A.R. and Khalili, S.M.R. (2012), "High-order free vibration analysis of sandwich beams with a flexible core using dynamic stiffness method", Compos. Struct., 94, 1503-1514. https://doi.org/10.1016/j.compstruct.2011.08.023
- Frikha, A., Zghal, A. and Dammak, F. (2018), "Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell elementis", Aerosp. Sci. Technol., 78, 438-451. https://doi.org/10.1016/j.ast.2018.04.048
- Gibson, R.F. (1994), Principles of Composite Material Mechanics, New York, NY, USA, McGraw-Hill, Inc.
- Ghorbanpour Arani, A. and Khoddami Maraghi, Z. (2015), "A feedback control system for vibration of magnetostrictive plate subjected to follower force using sinusoidal shear deformation theory", Ain Shams Eng. J., 7(1), 361-369. https://doi.org/10.1016/j.asej.2015.04.010
- Ghorbanpour Arani, A., Zarei, B. and Haghparast, E. (2016), "Application of Halpin-Tsai method in modelling and sizedependent vibration analysis of CNTs/fiber/polymer composite microplates", J. Comput. Appl. Mech., 47, 42-52. https://doi.org/10.22059/jcamech.2016.59254
- Ghosh, S., Agrawal, S., Pradhan, A.K. and Pandit, M.K. (2015), "Performance of vertically reinforced 1-3 piezo composites for active damping of smart sandwich beams", J. Sandw. Struct. Mater., 17(3), 258-277. https://doi.org/10.1177/1099636214565656
- Gudarzi, M. and Zamanian, H. (2013), "Application of active vibration control for earthquake protection of multi structural buildings", Int. J. Sci. Res. Know. (IJSRK), 1(11), 502-513. http://dx.doi.org/10.12983/ijsrk-2013-p502-513
- Guo, Z.K., Yang, X.D. and Zhang, W. (2018), "Dynamic analysis, active and passive vibration control of double-layer hourglass lattice truss structures", J. Sandw. Struct. Mater., 1-28. https://doi.org/10.1177/1099636218784339
- Hamed, E. and Rabinovitch, O. (2009), "Modeling and dynamics of sandwich beams with a viscoelastic soft core", AIAA Journal, 47(9), 2194-2211. https://doi.org/10.2514/1.41840
- He, Y., Chen, X., Liu, Z. and Qin, Y. (2018), "Piezoelectric selfsensing actuator for active vibration control of motorized spindle based on adaptive signal separation", Smart Mater. Struct., 27, 065011-65022. https://doi.org/10.1088/1361-665X/aabbf4
- Houari, A., Adda Bedia, E.A. and Tounsi, A. (2016), "Sizedependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position", Steel Compos. Struct., Int. J., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
- Kant, M. and Parameswaran, A.P. (2018), "Modeling of low frequency dynamics of a smart system and its state feedback based active control", Mech. Syst. Sig. Proc., 99, 774-789. https://doi.org/10.1016/j.ymssp.2017.07.018
- Karagiannis, D. and Radisavljevic-Gajic, V. (2018), "Siding mode boundary control of an Euler Bernoulli beam subject to disturbances", J. Vib. Control, 24(6), 1109-1122. https://doi.org/10.1109/TAC.2018.2793940
- Kent, L.G. and Sommerfeldt, S.D. (2004), "Application of theoretical modeling to multichannel active control of cooling fan noise", J. Acoust. Soc. America, 115, 228-240. https://doi.org/10.1121/1.1631940
- Khana, S., Saib, Y. and Prabu, M. (2018), "Active control of smart shape memory alloy composite flapper for aerodynamic applications", Procedia Compos. Sci., 133, 134-140. ttps://doi.org/10.1016/j.procs.2018.07.017
-
Khot, S.M. and Khan, Y. (2015), "Simulation of active vibration control of a cantilever beam using LQR, LQG and
$H-{\infty}$ optimal controllers", J. Vib. Anal. Measur. Control, 3(2), 134-151. - Khurram, A.A., Rakha, S.A., Ali, N., Asim, M.T., Guorui, Z. and Munir, A. (2015), "Microwave absorbing properties of lightweight nanocomposite/honeycomb sandwich structures", J. Nanotechnol. Eng., 6(1), 110-117. https://doi.org/10.1115/1.4031472
- Kim, B. and Yoon, J.Y. (2018), "Modified LMS strategies using internal model control for active noise and vibration control systems", Appl. Sci., 8(6), 1007-1023. https://doi.org/10.3390/app8061007
- Kim, M., Park, Y. and, Okoli, O.I. (2009), "Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites", Compos. Sci. Technol., 69, 335-342. https://doi.org/10.1016/j.compscitech.2008.10.019
- Klein, R.G. and Nachtigal, C.L. (2013), "The application of active control to improve boring bar performance", J. Dyn. Syst. Meas. Control, 97(2), 179-183. https://doi.org/10.1115/1.3426899
- Konka, H.P., Wahab, M.A. and Lian, K. (2012), "On mechanical properties of composite sandwich structures with embedded piezoelectric fiber composite sensors", J. Eng. Mater. Technol., Transactions of the ASME, 134(1), 349-361. https://doi.org/10.1115/1.4005349
- Kpeky, F., Abed-Meraim, F., Daya, E.M. and Samah, O.D. (2018), "Modeling of hybrid vibration control for multilayer structures using solid-shell finite elements", Mech. Adv. Mater. Struct., 5(12), 1033-1046. https://doi.org/10.1080/15376494.2017.1365987
- Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017), "Wave propagation of embedded viscoelastic FG-CNTreinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039
- Kumar, R.S. and Ray, M.C. (2016), "Smart damping of geometrically nonlinear vibrations of functionally graded sandwich plates using 1-3 piezoelectric composites", Mech. Adv. Mater. Struct., 23(6), 652-669. https://doi.org/10.1080/15376494.2015.1028692
- Kumara, A., Pandaa, S., Kumarb, A. and Narsaria, V. (2018), "Performance of a graphite wafer-reinforced viscoelastic composite layer for active-passive damping of plate vibration", Compos. Struct., 186, 303-314. https://doi.org/10.1016/j.compstruct.2017.12.019
- Lakshmipathi, J. and Vasudevan, R. (2019), "Dynamic characterization of a CNT reinforced hybrid uniform and nonuniform composite plates", Steel Compos. Struct., Int. J., 30(1), 31-46. https://doi.org/10.12989/scs.2019.30.1.031
- Li, J., Li, F. and Narita, Y. (2018), "Active control of thermal buckling and vibration for a sandwich composite laminated plate with piezoelectric fiber reinforced composite actuator facesheets", J. Sandw. Struct. Mater., 12, 1-19. https://doi.org/10.1177/1099636218783168
- Ma, G., Xu, M., Zhang, S., Zhang, Y. and Liu, X. (2018), "Active vibration control of an axially moving cantilever structure using PZT actuator", J. Aerosp. Eng., 31(5), 04018049. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000853
- Masmoudi, S., El Mahi, A. and Turki, S. (2015), "Use of piezoelectric as acoustic emission sensor for in situ monitoring of composite structures", Compos. B. Eng., 80, 307-320. https://doi.org/10.1016/j.compositesb.2015.06.003
- Mevada, J.R. and Prajapati, J.M. (2018), "Active vibration control of smart beam under parametric variations", J. Brazil. Soc. Mech. Sci. Eng., 40, 394-405. https://doi.org/10.1007/s40430-018-1310-6
- Mohammadimehr, M. and Shahedi, S. (2016), "Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM", Steel Compos. Struct., Int. J., 21(1), 1-36. https://doi.org/10.12989/scs.2016.21.1.001
- Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2015a), "Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method", Compos. Struct., 131, 654-671. https://doi.org/10.1016/j.compstruct.2015.05.077
- Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2015b), "Surface stress effect on the nonlocal biaxial buckling and bending analysis of polymeric piezoelectric nanoplate reinforced by CNT using eshelby-mori-tanaka approach", J. Solid Mech., 7(2), 173-190.
- Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2016a), "Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of doublecoupled piezoelectric polymeric nanocomposite reinforced by FG-SWNT", Compos. Part B, 87, 132-148. https://doi.org/10.1016/j.compositesb.2015.10.007
- Mohammadimehr, M., Rostami, R. and Arefi, M. (2016b), "Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT", Steel Compos. Struct., Int. J., 20(3), 513-544. https://doi.org/10.12989/scs.2016.20.3.513
- Mohammadimehr, M., Salemi, M. and Rousta Navi, B. (2016c), "Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature-dependent material properties under hydro-thermomechanical loadings using DQM", Compo. Struct., 138, 361-380. https://doi.org/10.1016/j.compstruct.2015.11.055
- Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2017), "Dynamic stability of MSGT sinusoidal viscoelastic piezoelectric polymeric FG-SWNT reinforced nanocomposite plate considering surface stress and agglomeration effects under hydro-thermoelectro-magneto-mechanical loadings", Mech. Adv. Mater. Struct., 24, 1325-1342. https://doi.org/10.1080/15376494.2016.1227507
- Mohammadimehr, M., Mohammadi-Dehabadi, A.A., Akhavan Alavi, S.M., Alambeigi, K., Bamdad, M., Yazdani, R. and Hanifehlou, S. (2018a) "Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite", Steel Compos. Struct., Int. J., 29(3), 405-422. https://doi.org/10.12989/scs.2018.29.3.405
- Mohammadimehr, M., Mehrabi, M., Hadizadeh, H. and Hadizadeh, H. (2018b), "Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory", Steel Compos. Struct., Int. J., 26(4), 513-531. https://doi.org/10.12989/scs.2018.26.4.513
- Moita, S.J., Araujo, L.A., Correia, V.F., Mota, C.M. and Herskovits, S.J. (2018), "Active-passive damping in functionally graded sandwich plate/shell structures", Compos. Struct., 202, 324-332. https://doi.org/10.1016/j.compstruct.2018.01.089
- Nath, J.K. and Kapuria, S. (2012), "Assessment of improved zigzag and smeared theories for smart cross-ply composite cylindrical shells including transverse normal extensibility under thermoelectric loading", Arch. Appl. Mech., 82(7), 859-877. https://doi.org/10.1007/s00419-011-0597-x
- Nguyen-Quang, K., Vo-Duy, T., Dang-Trung, H. and Nguyen-Thoi, T. (2018), "An isogeometric approach for dynamic response of laminated FG-CNT reinforced composite plates integrated with piezoelectric layers", Comput. Methods Appl. Mech. Eng., 332(15), 25-46. https://doi.org/10.1016/j.cma.2017.12.010
- Noh, M.S., Kim, S., Hwang, D.K. and Kang, C.Y. (2017), "Selfpowered flexible touch sensors based on PZT thin films using laser lift-off", Sensor Actuator Phys., 261, 288-294. https://doi.org/10.1016/j.sna.2017.04.046
- Park, S. and Yossifon, G. (2018), "Electro-thermal based active control of ion transport in a microfluidic device with an ion-perm selective membrane", Nanoscale, 10, 11633-11641. https://doi.org/10.1039/C8NR02389A
- Park, M., Lee, K.S., Shim, J., Liu, Y., Lee, C. and Cho, H. (2016), "Environment friendly, transparent nanofiber textiles consolidated with high efficiency PLEDs for wearable electronics", Org. Electron., 36, 89-96. https://doi.org/10.1016/j.orgel.2016.05.030
- Qin, Y., Li, Y.W., Lan, X.Z., Su, Y.S., Wang, X.Y. and Wu, Y.D. (2019), "Structural behavior of the stiffened double-skin profiled composite walls under compression", Steel Compos. Struct., Int. J., 31(1), 1-12. https://doi.org/10.12989/scs.2019.31.1.001
- Rahman, N., Alam, M.N. an Junaid, M. (2018), "Active vibration control of composite shallow shells: An integrated approach", J. Mech. Eng. Sci., 12(1), 3354-3369. https://doi.org/10.15282/jmes.12.1.2018.6.0300
- Rahmani, B. (2018), "Adaptive fuzzy sliding mode control for vibration suppression of a rotating carbon nanotube-reinforced composite beam", J. Vib. Control, 24(2), 2447-2463. https://doi.org/10.1177/1077546316687937
- Raju, G., Wu, Z. and Weaver, P.M. (2015), "Buckling analysis of variable angle tow composite plates using differential quadrature method", J. Indian Ins. Sci., 93(4), 635-688.
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, (2nd ed.), New York, NY, USA, CRC Press.
- Rojas, A.R. and Carcaterra, A. (2018), "An approach to optimal semi-active control of vibration energy harvesting based on MEMS", Mech. Syst. Sig. Proc., 107, 291-316. https://doi.org/10.1016/j.ymssp.2017.11.005
- Rao Patange, S.S., Raja, S., Vijayakumar, M.P. and Ranganath, V.R. (2018), "Study on low frequency energy harvesting system in laminated aluminum beam structures with delamination", J. Mech. Sci. Technol., 32(5), 1985-1993. https://doi.org/10.1007/s12206-018-0406-3
- Sapra, G., Sharma, M. and Vig, R. (2018), "Active vibration control of a beam instrumented with MWCNT/epoxy nanocomposite sensor and PZT-5H actuator, robust to variations in temperature", Microsyst. Technol., 24(3), 1683-1694. https://doi.org/10.1007/s00542-017-3551-1
- Sharif Zarei, M., Hajmohammad, M.H., Kolahchi, R. and Karami, H. (2018), "Dynamic response control of aluminum beams integrated with nanocomposite piezoelectric layers subjected to blast load using hyperbolic viscopiezo-elasticity theory", J. Sandw. Struct. Mater., 1-28. https://doi.org/10.1177/1099636218785316
- Toledo, J., Ruiz-Diez, V., Diaz, A., Ruiz, D., Donoso, A., Bellido, J.C., Wistrela, E., Kucera, M., Schmid, U., Hernando-Garcia, J. and Sanchez-Rojas, J.L. (2017), "Design and characterization of in-plane piezoelectric microactuators", Actuators, 6(2), 19-32. https://doi.org/10.3390/act6020019
- Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Methods Appl. Mech. Eng., 198(37-40), 2911-2935. ttps://doi.org/10.1016/j.cma.2009.04.011
- Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B, 89(1), 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016
- Tornabene, F., Fantuzzi, N., Viola, E. and Batra, R.C. (2018a), "Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory", Compos. Struct., 119(1), 67-89. https://doi.org/10.1016/j.compstruct.2014.08.005
- Tornabene, F., Liverani, A. and Caligiana, G. (2018b), "FGM and laminated doubly curved shells and panels of revolution with a free-form meridian: A 2-D GDQ solution for free vibrations", Int. J. Mech. Sci., 53(6), 446-470. https://doi.org/10.1016/j.ijmecsci.2011.03.007
- Trabelsi, S., Frikha, A., Zghal, S. and Dammak, F. (2019), "A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells", Eng. Struct., 178, 444-459. https://doi.org/10.1016/j.engstruct.2018.10.047
- Tummala, V.S., Mian, A., Chamok, N.H., Poduval, D., Ali, M. and Clifford, J. (2017), "Three dimensional printed dielectric substrates for radio frequency applications", J. Electron. Packaging, Transactions of the ASME, 139(2), 020904. https://doi.org/10.1115/1.4036384
- Uriri, S.A., Tashima, T., Zhang, X., Asano, M., Bechu, M., Guney, D.O., Yamamoto, T., Ozdemir, S.K., Wegener, M. and Tame, M.S. (2018), "Active control of a plasmonic metamaterial for quantum state engineering", Phys. Rev. A, 97, 053810. https://doi.org/10.1103/PhysRevA.97.053810
- Wang, X. and Liang, X. (2017), "Free vibration of soft-core sandwich panels with general boundary conditions by harmonic quadrature element method", Thin-Wall. Struct., 113, 253-261. https://doi.org/10.1016/j.tws.2016.12.004
- Wu, Y., Liu, Q., Fu, J., Li, Q. and Hui, D. (2017), "Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels", Compos. B Eng., 121, 122-133. https://doi.org/10.1016/j.compositesb.2017.03.030
-
Xie, C., Wu, Y. and Liu, Z. (2018), "Modeling and active vibration control of lattice grid beam with piezoelectric fiber composite using fractional order
$PD{\mu}$ algorithm", Compos. Struct., 198, 126-134. https://doi.org/10.1016/j.compstruct.2018.05.060 - Yang, M. and Qiao, P. (2005), "Higher-order impact modeling of sandwich structures with flexible core", Int. J. Solids Struct., 42, 5460-5490. https://doi.org/10.1016/j.ijsolstr.2005.02.037
- Yang, L., Fan, H., Liu, J., Ma, Y. and Zheng, Q. (2013), "Hybrid lattice-core sandwich composites designed for microwave absorption", Mater. Des., 50, 863-871. https://doi.org/10.1016/j.matdes.2013.03.032
- Yang, L., Liu, S., Zhang, H., Wu, H., Li, H. and Jiang, J. (2018a), "Hybrid Filtered-x adaptive vibration control with internal feedback and online identification", Shock and Vib., 9010567. https://doi.org/10.1155/2018/9010567
- Yang, M., Hu, Y., Zhang, J., Ding, G. and Song, C. (2018b), "Analytical model for flexural damping responses of CFRP cantilever beams in the low-frequency vibration", J. Low Freq. Noise Vib. Act. Control, 37(4), 669-681. https://doi.org/10.1177/1461348418756024
- Yavuz, S. (2019), "An enhanced method to control the residual vibrations of a single-link flexible glass fabric reinforced epoxyglass composite manipulator", Compos. Part B, 159(15), 405-417. https://doi.org/10.1016/j.compositesb.2018.10.019
- Zeng, Z., Gai, L., Petitpas, A., Li, Y., Luo, H. and Wang, D. (2017), "A flexible, sandwich structure piezoelectric energy harvester using PIN-PMN-PT/epoxy 2-2 composite flake for wearable application", Sensor Actuator Phys., 265, 62-69. https://doi.org/10.1016/j.sna.2017.07.059
- Zghal, A., Frikha, A. and Dammak, F. (2018), "Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels", Compos. Part B, 150, 165-183. https://doi.org/10.1016/j.compositesb.2018.05.037
- Zhang, Y., Campbell, S.A., Zhang, L. and Karthikeyan, S. (2017), "Sandwich structure based on back-side etching silicon (100) wafers for flexible electronic technology", Microsys. Technol., 23(3), 739-743. https://doi.org/10.1007/s00542-015-2737-7
- Zhang, Z., Yang, J., He, X., Han, Y., Zhang, J., Huang, J., Chen, D. and Xu, S. (2018a), "Active control of broadband plasmoninduced transparency in a terahertz hybrid metal-graphene metamaterial", RSC Advances, 8, 27746-27753. https://doi.org/10.1039/C8RA04329A
- Zhang, X.Y., Wang, R.X., Zhang, S.Q., Wang, Z.X., Qin, X.S. and Schmidt, R. (2018b), "Generalized-disturbance rejection control for vibration suppression of piezoelectric laminated flexible structures", Shock Vib., 1538936. https://doi.org/10.1155/2018/1538936
- Zonghong, X., Wei, Z., Peng, Z. and Xiang, L. (2017), "Design and development of conformal antennacomposite structure", Smart Mater. Struct., 26(9), 095009. https://doi.org/10.1088/1361-665X/aa7918
Cited by
- Computer modeling to forecast accurate of efficiency parameters of different size of graphene platelet, carbon, and boron nitride nanotubes: A molecular dynamics simulation vol.27, pp.2, 2019, https://doi.org/10.12989/cac.2021.27.2.111