DOI QR코드

DOI QR Code

Quantitative evaluation of through-thickness rectangular notch in metal plates based on lamb waves

  • Zhao, Na (College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology) ;
  • Wu, Bin (College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology) ;
  • Liu, Xiucheng (College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology) ;
  • Ding, Keqin (China Special Equipment Inspection and Research Institute) ;
  • Hu, Yanan (China Special Equipment Inspection and Research Institute) ;
  • Bayat, Mahmoud (Department of Civil and Environmental Engineering, University of Pittsburgh)
  • Received : 2016.03.26
  • Accepted : 2019.08.26
  • Published : 2019.09.25

Abstract

Lamb wave technology is a promising technology in the field of structural health monitoring and can be applied in the detection and monitoring of defects in plate structures. Based on the reconstruction algorithm for the probabilistic inspection of damage (RAPID), a Lamb-based detection and evaluation method of through-thickness rectangular notches in metal plates was proposed in this study. The influences of through-thickness rectangular notch length and the angle between sensing path and notch length direction on signals were further explored through simulations and experiments. Then a damage index calculation method which focuses on both phase and amplitude difference between detected signals and baseline signals was proposed. Based on the damage index difference between two vertically crossed sensing paths which pass through the notch in a sensor network, the notch direction identification method was proposed. In addition, the notch length was determined based on the damage index distribution along sensing paths. The experimental results showed that the image reconstructed with the proposed method could reflect the information for the evaluation of notches.

Keywords

References

  1. Avazpour, L. (2018), "Fractional Ostrowski type inequalities for functions whose derivatives are prequasiinvex", J. Inequalities Special Funct., 9(2), 15-29. https://doi.org/10.22342/jims.1.1.751.%25p.
  2. Avazpoura, L., Allahviranloob, T., and Islamc, S. (2016), "Uncertain Hermite-Hadamard inequality for functions with (s, m)- Godunova-Levin derivatives via fractional integral", J. Nonlinear Sci. Appl., 9(5),3333--3347 http://dx.doi.org/10.22436/jnsa.009.05.119.
  3. Cao, M., Ostachowicz W., Radzienski, M., Xu, W. (2013), "Multiscale shear-strain gradient for detecting delamination in composite laminates", Appl. Phys. Lett., 103(10): 101910. https://doi.org/10.1063/1.4820182.
  4. Delkhosh, M., Parand, K., and Ganji, D.D. (2018), "An efficient numerical method to solve the Falkner-Skan problem over an isothermal moving wedge", J. Numeric. Method. Heat Fluid Flow, 28(9), 2132-2157. https://doi.org/10.1108/hff-11-2017-0480.
  5. Deraemaeker, A., Preumont A., Reynders, E., De R. G., Kullaa, J., Lamsa, V., Worden, K., Manson, G., Barthorpe, R., Papatheou, E., Kudela, P., Malinowski, P., Ostachowicz, W. and Wandowski, T. (2010), "Vibration-based structural health monitoring using large sensor networks", Smart Struct. Syst., 6(3), 335-347. https://doi.org/10.12989/sss.2010.6.3.335.
  6. Fan, G., Zhang, H., Zhang, H., Zhu, W. and Chai, X. (2018), "Lamb wave local wavenumber approach for characterizing flat bottom defects in an isotropic thin plate", Appl. Sci., 8(9), 1600. https://doi.org/10.3390/app8091600.
  7. Ghadami, A., Behzad, M. and Mirdamadi, H. R. (2015), "A mode conversion-based algorithm for detecting rectangular notch parameters in plates using Lamb waves", Arch. Appl. Mech., 85(6), 793-804. https://doi.org/10.1007/s00419-015-0991-x.
  8. Hashemiparast, S. M., and Avazpour, L. (2008), "Applying Quadrature Rules with Multiple Nodes to Solving Integral Equations", AIP Conference Proceedings, 1048(1), 257-260. https://doi.org/10.1063/1.2990906.
  9. He, J., Ran, Y., Liu, B., Yang, J. and Guan, X. (2017), "A fatigue crack size evaluation method based on Lamb wave simulation and limited experimental data", Sensors, 17(9), 2097. https://doi.org/10.3390/s17092097.
  10. Hong, M., Wang, Q., Su, Z. and Cheng, L. (2014), "In situ health monitoring for bogie systems of CRH380 train on Beijing- Shanghai high-speed railway", Mech. Syst. Signal Process., 45(2), 378-395. https://doi.org/10.1016/j.ymssp.2013.11.017.
  11. Huang, S., Wei, Z., Zhao, W. and Wang, S. (2014), "A new omnidirectional EMAT for ultrasonic Lamb wave tomography imaging of metallic plate defects", Sensors, 14(2), 3458-3476. https://doi.org/10.3390/s140203458.
  12. Ihn, J. B. and Chang, F. K. (2004), "Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. Diagnostics", Smart Mater. Struct., 13(3), 609-620. https://doi.org/10.1088/0964-1726/13/3/020.
  13. Jamshidi, L., and Avazpour, L. (2012), "Solution of the fuzzy boundary value differential equations under generalized differentiability by shooting method", J. Fuzzy Set Value Anal., Article ID jfsva-00136, http://dx.doi.org/10.5899/2012/jfsva-00136 .
  14. Lee, B. C. and Staszewski, W. J. (2003), "Modelling of Lamb waves for damage detection in metallic structures: Part I. Wave propagation", Smart Mater. Struct., 12(5), 804-814. https://doi.org/10.1088/0964-1726/12/5/018.
  15. Lee, J., Sheen, B. and Cho, Y. (2015), "Quantitative tomographic visualization for irregular shape defects by guided wave long range inspection", J. Precision Eng. Manufact., 16(9), 1949-1954. https://doi.org/10.1007/s12541-015-0253-4.
  16. Liu, Z., Feng, X., He, C., and Wu, B. (2018), "Quantitative rectangular notch detection of Laser-induced Lamb waves in aluminium plates with wavenumber analysis", Trans. Nanjing U Aeronautics Astronautics, 2, 244-255. https://doi.org/10.16356/j.1005-1120.2018.02.244.
  17. Liu, Z., Yu, H., Fan, J., Hu, Y., He, C. and Wu, B. (2015), "Baseline-free delamination inspection in composite plates by synthesizing non-contact air-coupled Lamb wave scan method and virtual time reversal algorithm", Smart Mater. Struct., 24(4), https://doi.org/10.1088/0964-1726/24/4/045014 .
  18. Lowe, M. J. S. and Diligent, O. (2002b), "Low-frequency reflection characteristics of the s0 Lamb wave from a rectangular notch in a plate", J. Acoustical Soc. America, 111(1), 64-74. https://doi.org/10.1121/1.1424866.
  19. Lowe, M. J. S., Cawley, P., Kao, J. Y. and Diligent, O. (2002a), "The low frequency reflection characteristics of the fundamental antisymmetric Lamb wave a0 from a rectangular notch in a plate", J. Acoustical Soc. America, 112(6), 2612-2622. https://doi.org/10.1121/1.1512702.
  20. Lu, G., Feng, Q., Li, Y., Wang, H. and Song, G. (2017), "Characterization of ultrasound energy diffusion due to smallsize damage on an aluminum plate using piezoceramic transducers", Sensors, 17(12), 2796. https://doi.org/10.3390/s17122796.
  21. Lu, Y., Ye, L. and Su, Z. (2006), "Crack identification in aluminium plates using Lamb wave signals of a PZT sensor network", Smart Mater. Struct., 15(3), 839-849. https://doi.org/10.1088/0964-1726/15/3/021.
  22. Lu, Y., Ye, L., Su, Z. and Huang, N. (2007), "Quantitative evaluation of crack orientation in aluminium plates based on Lamb waves", Smart Mater. Struct., 16(5), 1907-1914. https://doi.org/10.1088/0964-1726/16/5/047.
  23. Lu, Y., Ye, L., Su, Z. and Yang, C. (2008), "Quantitative assessment of through-thickness crack size based on Lamb wave scattering in aluminium plates", Ndt and E International, 41(1), 59-68. https://doi.org/10.1016/j.ndteint.2007.07.003.
  24. Marino-Merlo, E., Bulletti, A., Giannelli, P., Calzolai, M. and Capineri, L. (2018), "Analysis of Errors in the Estimation of Impact Positions in Plate-Like Structure through the Triangulation Formula by Piezoelectric Sensors Monitoring", Sensors, 18(10), 3426. https://doi.org/10.3390/s18103426.
  25. Moser, F., Jacobs, L. J. and Qu, J. (1999), "Modeling elastic wave propagation in waveguides with the finite element method", Ndt and E International, 32(4), 225-234. https://doi.org/10.1016/S0963-8695(98)00045-0.
  26. Ng, C.(2015), "A two-stage approach for quantitative damage imaging in metallic plates using Lamb waves", Earthq. Struct., 8(4), 821-841. https://doi.org/10.12989/eas.2015.8.4.821.
  27. Rao, J., Ratassepp, M., Lisevych, D., Hamzah Caffoor, M. and Fan, Z. (2017), "On-line corrosion monitoring of plate structures based on guided wave tomography using piezoelectric sensors", Sensors, 17(12), 2882. https://doi.org/10.3390/s17122882.
  28. Rose, J. L. (2002), "A baseline and vision of ultrasonic guided wave inspection potential", J. Pressure Vessel Technol., 124(3), 273-282. https://doi.org/10.1115/1.1491272.
  29. Rucka, M., Wojtczak, E. and Lachowicz, J. (2018), "Damage imaging in Lamb wave-based inspection of adhesive joints", Appl. Sci., 8(4), 522. https://doi.org/10.3390/app8040522.
  30. Samaee, S. S., Yazdanpanah, O., Ganji, D. D., and Mofidi, A. A. (2015), "Analytical solution for a suspension bridge by applying HPM and VIM", J. Comput. Math., 92(4), 782-801. https://doi.org/10.1080/00207160.2014.909929.
  31. Santos, M. J., Perdigao, J. and Faia, P. (2008), "Ultrasonic guided waves scattering effects from defects in adhesively bonded lap joints using pitch and catch and pulse-echo techniques", J. Adhesion, 84(5), 421-438. https://doi.org/10.1080/00218460802089262.
  32. Sen, D., Nagarajaiah, S. and Gopalakrishnan, S. (2017), "Harnessing sparsity in lamb wave-based damage detection for beams", Struct. Monitor. Maintenance, 4(4), 381-396. https://doi.org/10.12989/smm.2017.4.4.381.
  33. Sohn, Y. and Krishnaswamy, S. (2004), "Interaction of a scanning laser-generated ultrasonic line source with a surface-breaking flaw", J. Acoustical Soc. America, 115(1), 172-181. https://doi.org/10.1121/1.1630997.
  34. Su, Z., Ye, L. and Lu, Y. (2006), "Guided Lamb waves for identification of damage in composite structures: A review", J. Sound Vib., 295(3-5), 753-780. https://doi.org/10.1016/j.jsv.2006.01.020.
  35. Van Velsor, J. K., Gao, H. and Rose, J. L. (2007), "Guided-wave tomographic imaging of defects in pipe using a probabilistic reconstruction algorithm", Insight Non Destructive Test. Condition Monitor., 49(9), 532-537. https://doi.org/10.1784/insi.2007.49.9.532.
  36. Wang, D., He, J., Guan, X., Yang, J. and Zhang, W. (2018), "A model assessment method for predicting structural fatigue life using Lamb waves", Ultrasonics, 84, 319-328. https://doi.org/10.1016/j.ultras.2017.11.017.
  37. Wang, D., Ye, L., Lu, Y. and Li, F. (2010), "A damage diagnostic imaging algorithm based on the quantitative comparison of lamb wave signals", Smart Mater. Struct., 19(6), 065008. https://doi.org/10.1088/0964-1726/19/6/065008.
  38. Wang, Q. and Xu, J. (2014), "Lamb wave tomography technique for crack damage detection", Proceedings of the 33rd Chinese Control Conference, Nanjing, China, July.
  39. Wang, Q., Wang, M., Yue, D. and Su, Z. (2016), "A Lamb wavebased crack diagnosis method using an improved RAPID algorithm", Proceedings of the 8th European Workshop On Structural Health Monitoring, Bilbao, Spain, July.
  40. Xu, W., Cao, M., Ostachowicz, W., Radzienski, M. and Xia, N. (2015), "Two-dimensional curvature mode shape method based on wavelets and Teager energy for damage detection in plates", J. Sound Vib., 347, 266-278. https://doi.org/10.1016/j.jsv.2015.02.038.
  41. Xu, W., Ding, K., Liu, J., Cao, M., Radzie n ski, M. and Ostachowicz, W. (2019a), Non-uniform crack identification in plate-like structures using wavelet 2D modal curvature under noisy conditions. Mech. Syst. Signal Process., 126, 469-489. https://doi.org/10.1016/j.ymssp.2019.01.047.
  42. Xu, W., Radzienski, M., Ostachowicz, W. and Cao, M. (2013), "Damage detection in plates using two-dimensional directional Gaussian wavelets and laser scanned operating deflection shapes", Struct. Health Monitoring, 12(5-6), 457-468. https://doi.org/10.1177/1475921713492365.
  43. Xu. W., Fang. H., Cao. M., Zhou. L., Wang. Q., and Ostachowicz. W. (2019b), "A noise-robust damage indicator for characterizing singularity of mode shapes for incipient delamination identification in CFRP laminates", Mech. Syst. Signal Process., 121, 183-200. https://doi.org/10.1016/j.ymssp.2018.10.025
  44. Yan, F., Royer Jr, R. L. and Rose, J. L. (2010), "Ultrasonic guided wave imaging techniques in structural health monitoring", J. Intelligent Mater. Syst. Struct., 21(3), 377-384. https://doi.org/10.1177/1045389X09356026.
  45. Yang, J., He, J., Guan, X., Wang, D., Chen, H., Zhang, W. and Liu, Y. (2016), "A probabilistic crack size quantification method using in-situ Lamb wave test and Bayesian updating", Mech. Syst. Signal Process., 78, 118-133. https://doi.org/10.1016/j.ymssp.2015.06.017.
  46. Zhao, X., Gao, H., Zhang, G., Ayhan, B., Yan, F., Kwan, C. and Rose, J. L. (2007), "Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring", Smart Mater. Struct., 16(4), 1208-1217. https://doi.org/10.1088/0964-1726/16/4/032.