DOI QR코드

DOI QR Code

Reliability analysis of simply supported beam using GRNN, ELM and GPR

  • Jagan, J (School of Civil Engineering, Galgotias University) ;
  • Samui, Pijush (Department of Civil Engineering, National Institute of Technology Patna) ;
  • Kim, Dookie (Department of Civil Engineering, Kunsan National University)
  • Received : 2019.01.03
  • Accepted : 2019.04.30
  • Published : 2019.09.25

Abstract

This article deals with the application of reliability analysis for determining the safety of simply supported beam under the uniformly distributed load. The uncertainties of the existing methods were taken into account and hence reliability analysis has been adopted. To accomplish this aim, Generalized Regression Neural Network (GRNN), Extreme Learning Machine (ELM) and Gaussian Process Regression (GPR) models are developed. Reliability analysis is the probabilistic style to determine the possibility of failure free operation of a structure. The application of probabilistic mathematics into the quantitative aspects of a structure and improve the qualitative aspects of a structure. In order to construct the GRNN, ELM and GPR models, the dataset contains Modulus of Elasticity (E), Load intensity (w) and performance function (${\delta}$) in which E and w are inputs and ${\delta}$ is the output. The achievement of the developed models was weighed by various statistical parameters; one among the most primitive parameter is Coefficient of Determination ($R^2$) which has 0.998 for training and 0.989 for testing. The GRNN outperforms the other ELM and GPR models. Other different statistical computations have been carried out, which speaks out the errors and prediction performance in order to justify the capability of the developed models.

Keywords

References

  1. Aaron, S.C., Walker, H.L., Dan, M., Ravi, M. and David, S. (2013), "Investigating the GRNN oracle as a method for combining multiple predictive models of colon cancer recurrence from gene microarrays", Procedia Comput. Sci., 20, 374-378. https://doi.org/10.1016/j.procs.2013.09.289.
  2. Abeer, A.A., Afrah, A.H.A., Sinan, Q.S., Zainab, H.A., Minh, T.T. and Yaseen, Z.M. (2018), "Shear strength of SFRCB without stirrups simulation: implementation of hybrid artificial intelligence model", Eng. Comput., 1-11. https://doi.org/10.1007/s00366-018-0681-8.
  3. Arvydas, B. and John, D.S. (2016), "Reliability analysis of fatigue fracture of wind turbine drivetrain components", Energy Procedia, 94, 146-154. https://doi.org/10.1016/j.egypro.2016.09.209.
  4. Bartosz, K. (2016), "GPU-accelerated extreme learning machines for imbalanced data streams with concept drift", Procedia Comput. Sci., 80, 1692-1701. https://doi.org/10.1016/j.procs.2016.05.509.
  5. Behrooz, K. (2016), "Chaotic conjugate stability transformation method for structural reliability analysis", Comput. Method. Appl. Mech. Eng., 310, 866-885. https://doi.org/10.1016/j.cma.2016.07.046.
  6. Behrooz, K. and Miri, M. (2014), "Reliability analysis of corroded pipes using conjugate HL-RF algorithm based on average shear stress yield criterion", Eng. Failure Anal., 46, 104-117. https://doi.org/10.1016/j.engfailanal.2014.08.005.
  7. Celikoglu, H.B. and Cigizoglu, H.K. (2007), "Public transportation trip flow modeling with generalized regression neural networks", Adv. Eng. Software, 38, 71-79. https://doi.org/10.1016/j.advengsoft.2006.08.003.
  8. Celikoglu, H.B. (2006), "Application of radial basis function and generalized regression neural networks in non-linear utility function specification for travel mode choice modeling", Math. Comput. Model., 44(7-8), 640-658. https://doi.org/10.1016/j.mcm.2006.02.002.
  9. Celikoglu, H.B. (2007), "A dynamic network loading process with explicit delay modeling", Transport. Res. Part C, 15(5), 279-299. https://doi.org/10.1016/j.trc.2007.04.003.
  10. Celikoglu, H.B., and Celikoglu, H.M. (2007), "Public transportation trip flow modeling with generalized regression neural networks", Adv. Eng. Software, 38(2), 71-79. https://doi.org/10.1016/j.advengsoft.2006.08.003.
  11. Chandwani, V., Agrawal, V. and Ravindra, N. (2015), "Modeling slump of ready mix concrete using genetic algorithms assisted training of Artificial Neural Network", Expert Syst. Appl., 42, 885-893. https://doi.org/10.1016/j.eswa.2014.08.048.
  12. Cigizoglu, H.K. and Alp, M. (2005), "Generalized regression neural network in modelling river sediment yield", Adv. Eng. Software, 37, 63-68. https://doi.org/10.1016/j.advengsoft.2005.05.002.
  13. Cornell, C.A. (1969), "A probability-based structural code", ACIJournal, 66, 974-985.
  14. David, S.J., Park, J.W., Erin, B., Qiyi, L., Xingye, Q., Youping, D., Yan, L. and Walker, H.L. (2012), "GRNN ensemble classifier for lung cancer prognosis using only demographic and tnm features", Procedia Comput. Sci., 12, 450-455. https://doi.org/10.1016/j.procs.2012.09.103.
  15. Dhivya, S., Jagan, J., Yildirim, D. and Pijush, S. (2016), "Reliability analysis of slope using MPMR, GRNN and GPR", Civil Environ. Eng. Concepts, Methodologies, Tools Appl., 712-726.
  16. Douglas, A.F. and Kwang, I.A. (2016), "Implicit treatment of technical specification and thermal hydraulic parameter uncertainties in gaussian process model to estimate safety margin", Nuclear Eng. Technol., 48(3), 684-701. https://doi.org/10.1016/j.net.2016.01.016.
  17. El Ghoulbzouri, A., Kissi, B. and Khamlichi, A. (2015), "Reliability analysis of reinforced concrete buildings: comparison between FORM and ISM", Procedia Eng., 114, 650-657. https://doi.org/10.1016/j.proeng.2015.08.006.
  18. Elahe, J., Mousavi, S.J., Navid, A.Z. and Joong, H.K. (2016), "Assessing the role of foresight on future stream flows in storage yield reliability analysis of surface water reservoirs", Procedia Eng., 154, 1163-1168. https://doi.org/10.1016/j.proeng.2016.07.530.
  19. Fudi, C., Hao, L., Zhihan, X., Shixia, H. and Dazuo, Y. (2015), "User-friendly optimization approach of fed-batch fermentation conditions for the production of iturinA using artificial neural networks and support vector machine", Electronic J. Biotechnol., 18(4), 273-280. http://dx.doi.org/10.1016/j.ejbt.2015.05.001.
  20. Gaurav, K. and Hasmat, M. (2016), "Generalized regression neural network based wind speed prediction model for western region of india", 6th International Conference On Advances In Computing & Communications, ICACC 2016, Cochin, India, September.
  21. Genton, M.G. (2001), "Classes of kernels for machine learning: a statistics perspective", J. Mach. Learn. Res., 2, 299-312.
  22. Gunnur, Y. (2016), "Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches", Struct. Eng. Mech., 57(4), 657-680. https://doi.org/10.12989/sem.2016.57.4.657.
  23. Harish, N., Anand, K. and Osman, A. (2014), "Neural network modelling, simulation and prediction of innovation growth in united arab emirates (UAE)", Procedia Comput. Sci., 2014, 36, 269-275. https://doi.org/10.1016/j.procs.2014.09.092.
  24. Hiroyuki, M. and Kaoru, N. (2014), "Application of gaussian process to locational marginal pricing forecasting", Procedia Comput. Sci., 36, 220-226. https://doi.org/10.1016/j.procs.2014.09.083.
  25. Hua, P.C., and Nan, X. (2015), "Symptom-based reliability analyses and performance assessment of corroded reinforced concrete structures", Struct. Eng. Mech., 53(6), 1183-1200. http://dx.doi.org/10.12989/sem.2015.53.6.1183.
  26. Huang, G.B., Zhu, Q.Y. and Siew, C.K. (2004), "Extreme learning machine: a new learning scheme of feedforward neural networks", Proceedings of 2004 IEEE international joint conference on neural networks (IJCNN'2004), Budapest, Hungary.
  27. Huang, G.B., Zhu, Q.Y. and Siew, C.K. (2006). "Extreme learning machine: theory and applications", Neurocomputing, 70(1), 489-501. https://doi.org/10.1016/j.neucom.2005.12.126.
  28. Jeffrey, C.J., Rachel, B.S., Diego, M., Ronald, L.B. and Curtis, L.S. (2015), "The development of dynamic human reliability analysis simulations for inclusion in risk informed safety margin characterization frameworks", Procedia Manufacturing, 3, 1305-1311. https://doi.org/10.1016/j.promfg.2015.07.278.
  29. Jesna, N.M. and Anjaneyulu, M.V.L.R. (2016), "Reliability analysis of horizontal curves on two lane highways", Transport. Res. Procedia, 17, 107-115. https://doi.org/10.1016/j.trpro.2016.11.066.
  30. Jesper, L.R.A and Stamatios, N.S. (2015), "Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes", Neuro Image, 122, 166-176. https://doi.org/10.1016/j.neuroimage.2015.07.067.
  31. Jiatang, C. and Xiong, Y. (2017), "Application of extreme learning machine combination model for dam displacement prediction", Procedia Comput. Sci., 373-378. https://doi.org/10.1016/j.procs.2017.03.120.
  32. Jiatang, C. and Yan, X. (2017), "The quality evaluation of classroom teaching based on FOA-GRNN", Procedia Comput. Sci., 107, 355-360. https://doi.org/10.1016/j.procs.2017.03.117.
  33. Jing, L., Salim, R.D., Aldlemy, M.S., Abdullah, J.M. and Yaseen, Z.M. (2019), "Fiberglass-Reinforced Polyester Composites Fatigue Prediction Using Novel Data-Intelligence Model", Arabian J. Sci. Eng., 44(4), 3343-3356. https://doi.org/10.1007/s13369-018-3508-4.
  34. Kang, F., Han, S., Salgado, R. and Li, J. (2015), "System probabilistic stability analysis of soil slopes using gaussian process regression with latin hypercube sampling", Comput. Geotech., 13-25. https://doi.org/10.1016/j.compgeo.2014.08.010.
  35. Keshtegar, B., Mansour, B. and Yaseen Z.M. (2019), "Shear strength of steel fiber-unconfined reinforced concrete beam simulation: Application of novel intelligent model", Compos. Struct., 212, 230-242. https://doi.org/10.1016/j.compstruct.2019.01.004.
  36. Kheon, H.L., Miso, J., Keun, P., Dong, C.P., Yong, M.J. and Soo, Y.M. (2015), "An efficient learning scheme for extreme learning machine and its application", J. Comput. Sci. Electronics Eng., 3(4), 212-221.
  37. Kim, B., Lee, D.W., Parka, K.Y., Choi, S.R. and Choi, S. (2004), "Prediction of plasma etching using a randomized generalized regression neural network", Vacuum, 76, 37-43. https://doi.org/10.1016/j.vacuum.2004.05.018.
  38. Kindie, B.N., Khanna, H.N. and Kannan, A. (2016), "Hybrid approach using fuzzy sets and extreme learning machine for classifying clinical datasets", Info. Medicine Unlocked, 2, 1-11. https://doi.org/10.1016/j.imu.2016.01.001.
  39. Lahouari, G., Tarek, R.S. and Khaled, S.A. (2013), "Mobility prediction in mobile ad hoc networks using extreme learning machines", Procedia Comput. Sci., 19, 305-312. https://doi.org/10.1016/j.procs.2013.06.043.
  40. Lu, M. and Xuedong, Y. (2014), "Modeling zonal traffic accident counts with the regression under zero-adjusted inverse gaussian distribution", Procedia Social Behavioral Sci., 138, 452-459. https://doi.org/10.1016/j.sbspro.2014.07.224.
  41. Marta, S., Izabela, S., Kotyniac, R. and Kaszubskac, M. (2017), "The application of a probabilistic method to the reliability analysis of longitudinally reinforced concrete beams", International Conference on Analytical Models and New Concepts in Concrete and Masonry Structures AMCM 2017, 273-280. https://doi.org/10.1016/j.proeng.2017.06.214.
  42. Mbarka, S., Julien, B., Mounir, L., Hedi, H. and Felix, D. (2010), "Reliability analyses of slope stability: homogeneous slope with circular failure", Europe. J. Environ. Civil Eng., 14, 1227-1257. https://doi.org/10.1080/19648189.2010.9693293.
  43. Milica, G., Nikola, M., Lina, M.R.B., Pei, H.S., Stefan, U., David, V., Tsung, H.W. and Steve, Y. (2016), "Dialogue manager domain adaptation using gaussian process reinforcement learning", Comput. Speech Language, 45, 552-569. https://doi.org/10.1016/j.csl.2016.09.003.
  44. Navin, P.D. (1992), "Reliability indices for road geometric design", Canadian J. Civil Eng., 19, 760-766. https://doi.org/10.1139/l92-087.
  45. Nurichan, C. (2014), "Application of support vector machines and relevance vector machines in predicting uniaxial compressive strength of volcanic rocks", J. African Earth Sci., 100, 634-644. https://doi.org/10.1016/j.jafrearsci.2014.08.006.
  46. Olmati, P., Sagaseta, J., Cormie, P. and Jones, A.E.K. (2017), "Simplified reliability analysis of punching in reinforced concrete flat slab buildings under accidental actions", Eng. Struct., 130, 83-98. https://doi.org/10.1016/j.engstruct.2016.09.061.
  47. Peng, T., Xia, J., Cheng, Z., Qingyan, F. and Gang, C. (2014), "Modeling and optimization of nox emission in a coal-fired power plant using advanced machine learning methods", Energy Procedia, 61, 377-380. https://doi.org/10.1016/j.egypro.2014.11.1129.
  48. Ramachandra, M.A., Aravindan, M., and Ganesh, P. (2018), "Prediction of flexural behaviour of RC beams strengthened with ultra high performance fiber reinforced concrete", Struct. Eng. Mech., 65(3), 315-325. https://doi.org/10.12989/sem.2018.65.3.315.
  49. Rasmussen, C.E. and Williams, C.K.I. (2005), Gaussian Process for Machine Learning. MIT Press, Cambridge, Massachusetts, USA.
  50. Riza, S.O.K. (2017), "Predicting shear strength of SFRC slender beams without stirrups using an ANN model", Struct. Eng. Mech., 61(5), 605-615. https://doi.org/10.12989/sem.2017.61.5.605.
  51. Robert, R.R., Michael, A.O. and David, A.H. "Gaussian process regression for forecasting battery state of health", J. Power Sources, 357, 209-219. https://doi.org/10.1016/j.jpowsour.2017.05.004.
  52. Shaikh, A.H., Manza, R.R. and Ramteke, R.J. (2010) "Generalized regression neural network and radial basis function for heart disease diagnosis", J. Comput. Appl., 7(13), 7-13.
  53. Sitharam, T.G., Pijush, S. and Anbazhagan, P. (2008), "Spatial variability of rock depth in Bangalore using geostatistical, neural network and support vector machine models", Geotech. Geological Eng., 26(5), 503-517. https://doi.org/10.1007/s10706-008-9185-4.
  54. Specht, D.F. (1991), "A general regression neural network", IEEE Transactions on Neural Networks, 2(6), 68-576. https://doi.org/10.1109/72.97934
  55. Villanueva, I., Lazaro, I. and Anzurez, J. (2012), "Reliability analysis of LED-based electronic devices", Procedia Eng., 35, 260-269. https://doi.org/10.1016/j.proeng.2012.04.189.
  56. Walker, H.L.Jr., Xinpei, M., Erin, B., Xingye, Q., John, H., Timothy, M. and Park, J.W. (2012), "PNN/GRNN ensemble processor design for early screening of breast cancer", Procedia Comput. Sci., 12, 438-443. https://doi.org/10.1016/j.procs.2012.09.101.
  57. Wei, L., Quadrifoglio, L. and Petrelli, M. (2017), "Reliability analysis of centralized versus decentralized zoning strategies for paratransit services", Transport. Res. Procedia, 25C, 4100-4113. https://doi.org/10.1016/j.trpro.2017.05.340.
  58. Yagiz, S., Sezer, E.A. and Gokceoglu, C. (2012), "Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks", Int. J. Numer. Anal. Meth. Geomech. 36, 1636-1650. https://doi.org/10.1002/nag.1066.
  59. Yan-lei, W., Ming-min, C. and Hui-jie, S. (2014), "Timedependent reliability analysis of circular CFST stub columns under environmental corrosion", Pacific Sci. Rev., 16(3), 201-206. https://doi.org/10.1016/j.pscr.2015.04.002.
  60. Yara, R. and Mariette, A. (2015), "On the distributed implementation of unsupervised extreme learning machines for big data", Procedia Comput. Sci., 53, 167-174. https://doi.org/10.1016/j.procs.2015.07.291.
  61. Yaseen, Z.M. and Keshtegar, B. (2018), "Limited descent-based mean value method for inverse reliability analysis", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-018-0661-z.
  62. Yaseen, Z.M., Haitham, A.A. and Tran, M.T. (2018), "Beamcolumn joint shear prediction using hybridized deep learning neural network with genetic algorithm", IOP Conference Series: Earth and Environmental Science, 143. https://doi.org/10.1088/1755-1315/143/1/012025.
  63. Yaseen, Z.M., Tran, M.T., Kim, S., Bakhshpoori, T. and Deo, R.C. (2018), "Shear strength prediction of steel fiber reinforced concrete beam using hybrid intelligence models: A new approach", Eng. Struct., 177, 244-255. https://doi.org/10.1016/j.engstruct.2018.09.074.
  64. Ying, W., Libo, W. and Ming, Q.W. (2011), "Software reliability analysis of Hierarchical architecture based on Markov model", Procedia Eng., 15, 2857-2861. https://doi.org/10.1016/j.proeng.2011.08.538.
  65. Yinghe, W., Xinyi, Z. and Baotian, W. (2013), "LS-SVM and monte carlo methods based reliability analysis for settlement of soft clayey foundation", J. Rock Mech. Geotech. Eng., 5(4), 312-317. https://doi.org/10.1016/j.jrmge.2012.06.003.
  66. Youchen, Z. and Zongbo, J. (2012), "Reliability analysis of main steam pipe containing defects", Procedia Eng., 43, 150-155. https://doi.org/10.1016/j.proeng.2012.08.026.
  67. Yu, L., Danning, Z. and Hongbing, C. (2015), "Prediction of length-of-day using extreme learning machine", Geodesy Geodynam., 6(2), 151-159. https://doi.org/10.1016/j.geog.2014.12.007.
  68. Zhou, X.Y., Gosling, X.Y., Ullah, Z., Kaczmarczyk, L. and Pearce, C.J. (2016), "Exploiting the benefits of multi-scale analysis in reliability analysis for Compos. Struct.", Compos. Struct., 155, 197-212. https://doi.org/10.1016/j.compstruct.2016.08.015.
  69. Zuo, B., Liyanaarachchi, L.C.K. and Guang, B.H. (2015), "Generic object recognition with local receptive fields based extreme learning machine", Procedia Comput. Sci., 53, 391-399. https://doi.org/10.1016/j.procs.2015.07.316.