Acknowledgement
Supported by : Beijing Municipal Education Commission, National Science Foundation of China
References
- Ajrab, J.J., Pekcan, G. and Mander, J.B. (2004), "Rocking wall-Frame structures with supplemental tendon systems", Journal of Structural Engineering, 130(6), 895-903. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:6(895)
- Araki, Y., Shrestha, K.C., Maekawa, N., Koetaka, Y., Omori, T. and Kainuma, R. (2016), "Shaking table tests of steel frame with superelastic Cu-Al-Mn SMA tension braces", Earthq. Eng. Struct. Dynam., 45(2), 297-314. https://doi.org/10.1002/eqe.2659.
- Baber, T.T. and Noori, M.N. (1985), "Random vibration of degrading, pinching systems", J. Eng. Mech., 111(8), 1010-1026. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:8(1010).
- Baber, T.T. and Wen, Y.K. (1981), "Random vibration hysteretic, degrading systems", J. Eng. Mech. Divison, 107(6), 1069-1087. https://doi.org/10.1061/JMCEA3.0002768
- Bazaez, R. and Dusicka, P. (2016), "Cyclic behavior of reinforced concrete bridge bent retrofitted with buckling restrained braces", Eng. Struct., 119, 34-48. https://doi.org/10.1016/j.engstruct.2016.04.010.
- Bouc, R. (1967), "Forced vibrations of mechanical systems with hysteresis", Proceedings of the Fourth Conference on Nonlinear Oscillations, Prague, Czechoslovakia.
- Carboni, B., Lacarbonara, W. and Auricchio, F. (2014), "Hysteresis of multiconfiguration assemblies of nitinol and steel strands: experiments and phenomenological identification", J. Eng. Mech., 141(3). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000852.
- Chang, C., Strano, S. and Terzo, M. (2016), "Modelling of hysteresis in vibration control systems by means of the Bouc-Wen model", Shock Vib., 2016. http://dx.doi.org/10.1155/2016/3424191.
- Chatzi, E.N. and Smyth, A.W. (2009), "The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non-collocated heterogeneous sensing", Struct. Control Health Monitor., 16(1), 99-123. https://doi.org/10.1002/stc.290.
- Chou, C.C. and Chen, Y.C. (2012), "Development and seismic performance of steel dual-core self-centering braces", Proceedings of 15th World Conference on Earthquake Engineering, Lisbon, Portugal, September.
- Chou, C.C. and Chung, P.T. (2014), "Development and seismic tests of a cross-anchored dual-core self-centering brace using steel tendons as tensioning elements", Proceedings of the 10th National Conference on Earthquake Engineering, Anchorage, Alaska, United States, July.
- Chou, C.C. and Lai, Y.J. (2009), "Post-tensioned self-centering moment connections with beam bottom flange energy dissipators", J. Contruct. Steel Res., 65(10), 1931-1941. https://doi.org/10.1016/j.jcsr.2009.06.002.
- Christopoulos, C., Filiatrault, A., Uang, C. and Folz, B. (2002), "Posttensioned energy dissipating connections for momentresisting steel frames", J. Struct. Eng., 128(9), 1111-1120. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1111).
- Christopoulos, C., Tremblay, R., Kim, H.J. and Lacerte, M. (2008), "Self-centering energy dissipative bracing system for the seismic resistance of structures: development and validation", J. Struct. Eng., 134(1), 96-107. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(96).
- Clough, R. W., Benuska, K. L., and Wilson, E.L. (1965). "Inelastic earthquake response of tall buildings", Proceedings, Third World Conference on Earthquake Engineering, New Zealand, January.
- Dolce, M., Cardone, D. and Marnetto, R. (2000), "Implementation and testing of passive control devices based on shape memory alloys", Earthq. Eng. Struct. Dynam., 29(7), 945-968. https://doi.org/10.1002/1096-9845(200007)29:7%3C945::AIDEQE958%3E3.0.CO;2-%23.
- Domaneschi, M. (2012), "Simulation of controlled hysteresis by the semi-active Bouc-Wen model", Comput. Struct., 106, 245-257. https://doi.org/10.1016/j.compstruc.2012.05.008.
- Dong, H., Du, X., Han, Q., Hao, H., Bi, K. and Wang, X. (2017), "Performance of an innovative self-centering buckling restrained brace for mitigating seismic responses of bridge structures with double-column piers", Eng. Struct., 148, 47-62. https://doi.org/10.1016/j.engstruct.2017.06.011.
- Dong, H. H., Du, X. L., Han, Q., Bi, K. M., Hao, H., (2019). "Hysteretic performance of RC double-column bridge piers with self-centering buckling-restrained braces", Bullet. Earthq. Eng., https://doi.org/10.1007/s10518-019-00586-4.
- Eatherton, M.R., Fahnestock, L.A. and Miller, D.J. (2014), "Computational study of self-centering buckling-restrained braced frame seismic performance", Earthq. Eng. Struct. Dynam., 43(13), 1897-1914. https://doi.org/10.1002/eqe.2428.
- Eatherton, M.R., Ma, X., Krawinkler, H., Deierlein, G.G. and Hajjar, J.F. (2014), "Quasi-static cyclic behavior of controlled rocking steel frames", J. Struct. Eng., 140(11). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001005.
- Elbahey, S. and Bruneau, M. (2012), "Bridge Piers with Structural Fuses and Bi-Steel Columns. I: Experimental Testing", J. Bridge Eng., 17(1), 25-35. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000234.
- Erochko, J., Christopoulos, C. and Tremblay, R. (2014), "Design and Testing of an Enhanced-Elongation Telescoping Self-Centering Energy-Dissipative Brace", J. Struct. Eng., 141(6), https://doi.org/10.1061/(ASCE)ST.1943-541X.0001109.
- Erochko, J., Christopoulos, C., Tremblay, R. and Choi, H. (2010), "Residual drift response of SMRFs and BRB frames in steel buildings designed according to ASCE 7-05", J. Struct. Eng., 137(5), 589-599. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000296.
- Erochko, J., Christopoulos, C., Tremblay, R. and Kim, H.J. (2013), "Shake table testing and numerical simulation of a self-centering energy dissipative braced frame", Earthq. Eng. Struct. Dynam., 42(11), 1617-1635. https://doi.org/10.1002/eqe.2290.
- Foliente, G.C. (1995), "Hysteresis modeling of wood joints and structural systems", J. Struct. Eng., 121(6), 1013-1022. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:6(1013).
- Han, Q, Jia, Z.L., Xu, K., Zhou, Y.L., Du, X.L. (2019). "Hysteretic behavior investigation of self-centering double-column rocking piers for seismic resilience", Eng. Struct., 188, 218-232. https://doi.org/10.1016/j.engstruct.2019.03.024.
- Huang, Y.C. and Tsai, K.C. (2002), "Experimental responses of large scale buckling restrained brace frames", CEER/R91-03; Center for Earthquake Engineering Research, National Taiwan Univ., Taiwan.
- Imbsen, R. A. (2007), AASHTO Guide Specifications for LRFD Seismic Bridge Design", American Association of State Highway and Transport Officials, Subcommittee for Seismic Effects on Bridges, USA.
- Kim, H.J. and Christopoulos, C. (2009), "Numerical models and ductile ultimate deformation response of post-tensioned selfcentering moment connections", Earthq. Eng. Struct. Dynam., 38(1), 1-21. https://doi.org/10.1002/eqe.836.
- Kitayama, S. and Constantinou, M.C. (2016), "Design and Analysis of Buildings with Fluidic Self-Centering Systems", J. Struct. Eng., 142(11), https://doi.org/10.1061/(ASCE)ST.1943-541X.0001583.
- Kitayama, S. and Constantinou, M.C. (2017), "Fluidic Self-Centering Devices as Elements of Seismically Resistant Structures: Description, Testing, Modeling, and Model Validation", J. Struct. Eng., 143(7). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001787.
- Li, H., Mao, C.X. and Ou, J.P. (2008), "Experimental and theoretical study on two types of shape memory alloy devices", Earthq. Eng. Struct. Dynam., 37(3), 407-426. https://doi.org/10.1002/eqe.761.
- Ma, H.W. and Cho, C.D. (2008), "Feasibility study on a superelastic SMA damper with re-centring capability", Mater. Sci. Eng. A, 473(1), 290-296. https://doi.org/10.1016/j.msea.2007.04.073.
- Ma, H.W. and Yam, M.C. (2011), "Modelling of a self-centring damper and its application in structural control", J. Contruct. Steel Res., 67(4), 656-666. https://doi.org/10.1016/j.jcsr.2010.11.014.
- Ma, X., Eatherton, M., Hajjar, J., Krawinkler, H. and Deierlein, G. (2010) "Seismic design and behavior of steel frames with controlled rocking-Part II: Large scale shake table testing and system collapse analysis", Proceedings of the 2010 Structures Congress, Orlando, Florida, United States, May. https://doi.org/10.1061/41130(369)139.
- McCormick, J., Aburano, H., Ikenaga, M. and Nakashima, M. (2008) "Permissible residual deformation levels for building structures considering both safety and human elements", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, October.
- Miller, D.J., Fahnestock, L.A. and Eatherton, M.R. (2011), "Selfcentering buckling-restrained braces for advanced seismic performance", Proceedings of the 2011 Structures Congress, Las Vegas, Nevada, April. https://doi.org/10.1061/41171(401)85.
- Miller, D.J., Fahnestock, L.A. and Eatherton, M.R. (2012), "Development and experimental validation of a nickel-titanium shape memory alloy self-centering buckling-restrained brace", Eng. Struct., 40, 288-298. https://doi.org/10.1016/j.engstruct.2012.02.037.
- Nicknam, A. and Filiatrault, A. (2015), "Direct Displacement- Based Seismic Design of Propped Rocking Walls", Earthq. Spectra, 31(1), 179-196. https://doi.org/10.1193/051512EQS187M.
- Ozbulut, O.E. and Hurlebaus, S. (2012), "Application of an SMAbased hybrid control device to 20-story nonlinear benchmark building", Earthq. Eng. Struct. Dynam., 41(13), 1831-1843. https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Hurlebaus%2C+Stefan. https://doi.org/10.1002/eqe.2160
- Ozbulut, O.E., Hurlebaus, S. and DesRoches, R. (2011), "Seismic response control using shape memory alloys: a review", J. Intelligent Mater. Syst. Struct., 22(14), 1531-1549. https://doi.org/10.1177/1045389X11411220
- Ricles, J.M., Sause, R., Peng, S. W. and Lu, L.W. (2002), "Experimental evaluation of earthquake resistant posttensioned steel connections", J. Struct. Eng., 128(7), 850-859. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:7(850).
- Saiidi, M. and Sozen, M.A. (1981), "Simple nonlinear seismic analysis of R/C structures", J. Struct. Divison, 107(5), 937-953. https://doi.org/10.1061/JSDEAG.0005714
- Sireteanu, T., Giuclea, M. and Mitu, A.M. (2010), "Identification of an extended Bouc-Wen model with application to seismic protection through hysteretic devices", Comput. Mech., 45(5), 431-441. https://doi.org/10.1007/s00466-009-0451-y.
- Sivaselvan, M.V. and Reinhorn, A.M. (2000), "Hysteretic models for deteriorating inelastic structures", J. Eng. Mech., 126(6), 633-640. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:6(633).
- Takeda, T., Sozen, M.A. and Nielsen, N.N. (1970), "Reinforced concrete response to simulated earthquakes", J. Struct. Divison, 96(12), 2557-2573. https://doi.org/10.1061/JSDEAG.0002765
- Tremblay, R. and Christopoulos, C. (2012) "Self-centering energy dissipative brace apparatus with tensioning elements", US Patent 8,250,818,2012.
- Tremblay, R., Lacerte, M. and Christopoulos, C. (2008), "Seismic response of multistory buildings with self-centering energy dissipative steel braces", J. Struct. Eng., 134(1), 108-120. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(108).
- Wen, Y. K. (1976), "Method for random vibration of hysteretic systems", J. Eng. Mech. Divison, 102(2), 249-263. https://doi.org/10.1061/JMCEA3.0002106
- Xie, Z.B. and Feng, J.C. (2012), "Real-time nonlinear structural system identification via iterated unscented Kalman filter", Mech. Syst. Signal Process, 28, 309-322. https://doi.org/10.1016/j.ymssp.2011.02.005.
- Xiong, K., Zhang, H.Y. and Chan, C.W. (2006), "Performance evaluation of UKF-based nonlinear filtering", Automatica, 42(2), 261-270. https://doi.org/10.1016/j.automatica.2005.10.004.
- Xu, L.H., Fan, X.W. and Li, Z.X. (2016), "Development and experimental verification of a pre-pressed spring self-centering energy dissipation brace", Eng. Struct., 127, 49-61. https://doi.org/10.1016/j.engstruct.2016.08.043.
- Xu, L.H., Fan, X.W. and Li, Z.X. (2017), "Cyclic behavior and failure mechanism of self-centering energy dissipation braces with pre-pressed combination disc springs", Earthq. Eng. Struct. Dynam., 46(7), 1065-1080. https://doi.org/10.1002/eqe.2844.
- Zhou, Z., Xie, Q., Lei, X., He, X. and Meng, S. (2015), "Experimental investigation of the hysteretic performance of dual-tube self-centering buckling-restrained braces with composite tendons", J. Compos. Construct., 19(6), https://doi.org/10.1061/(ASCE)CC.1943-5614.0000565.
- Zhou, Z., Xie, Q., Lei, X.C., He, X.T. and Meng, S.P. (2015), "Experimental investigation of the hysteretic performance of dual-tube self-centering buckling-restrained braces with composite tendons", J. Compos. Construct., 19(6), https://doi.org/10.1061/(ASCE)CC.1943-5614.0000565.
- Zhu, S. and Zhang, Y. (2008), "Seismic analysis of concentrically braced frame systems with self-centering friction damping braces", J. Struct. Eng., 134(1), 121-131. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(121).
- Zhu, S.Y. and Zhang, Y.F. (2007), "Seismic behaviour of selfcentring braced frame buildings with reusable hysteretic damping brace", Earthq. Eng. Struct. Dynam., 36(10), 1329-1346. https://doi.org/10.1002/eqe.683.
- Zhu, S.Y. and Zhang, Y.F. (2008), "Seismic analysis of concentrically braced frame systems with self-centering friction damping braces", J. Struct. Eng., 134(1), 121-131. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(121).
Cited by
- Strength reduction factor of self-centering structures under near-fault pulse-like ground motions vol.24, pp.1, 2019, https://doi.org/10.1177/1369433220945055