DOI QR코드

DOI QR Code

Numerical frequency analysis of skew sandwich layered composite shell structures under thermal environment including shear deformation effects

  • Katariya, Pankaj V. (Department of Mechanical Engineering, National Institute of Technology Rourkela) ;
  • Panda, Subrata K. (Department of Mechanical Engineering, National Institute of Technology Rourkela)
  • Received : 2019.02.09
  • Accepted : 2019.04.18
  • Published : 2019.09.25

Abstract

The numerical thermal frequency responses of the skew sandwich shell panels structure are investigated via a higher-order polynomial shear deformation theory including the thickness stretching effect. A customized MATLAB code is developed using the current mathematical model for the computational purpose. The finite element solution accuracy and consistency have been checked via solving different kinds of numerical benchmark examples taken from the literature. After confirming the standardization of the model, it is further extended to show the effect of different important geometrical parameters such as span-to-thickness ratios, aspect ratios, curvature ratios, core-to-face thickness ratios, skew angles, and support conditions on the frequencies of the sandwich composite flat/curved panel structure under elevated temperature environment.

Keywords

References

  1. Abualnour, M., Houari, M.S.A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.
  2. Akgoz, B. and Civalek, O. (2017), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Composites Part B., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024.
  3. Baltacloglu, A.K. and Civalek, O. (2018), "Vibration analysis of circular cylindrical panels with CNT reinforced and FGM composites", Compos. Struct., 202, 374-388. https://doi.org/10.1016/j.compstruct.2018.02.024.
  4. Chandrashekhar, M. and Ganguli, R. (2010), "Nonlinear vibration analysis of composite laminated and sandwich plates with random material properties", Int. J. Mech. Sci., 52, 874-891. https://doi.org/10.1016/j.ijmecsci.2010.03.002.
  5. Civalek, O. (2014), "Elastic buckling behavior of skew shaped single-layer graphene sheets", Thin Solid Films., 550, 450-458. https://doi.org/10.1016/j.tsf.2013.10.021.
  6. Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2009), Concepts and Applications of Finite Element Analysis, Wiley, Singapore.
  7. Ferreira, A.J.M., Viola, E., Tornabene, F., Fantuzzi, N. and Zenkour, A.M. (2013), "Analysis of sandwich plates by generalized differential quadrature method", Math. Prob. Eng., https://doi.org/10.1155/2013/964367.
  8. Gurses, M., Civalek, O., Korkmaz, A.K. and Ersoy, H. (2009), "Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory", Int. J. Numer. Meth. Engng., 79, 290-313. https://doi.org/10.1002/nme.2553.
  9. Hajmohammad, M.H., Nouri, A.H., Zarei, M.S. and Kolahchi, R. (2018), "A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal environment", Eng. Comput., https://doi.org/10.1007/s00366-018-0655-x.
  10. Han, B., Qin, K.K., Zhang, Q.C., Zhang, Q., Lu, T.J. and Lu, B.H. (2017), "Free vibration and buckling of foam-filled composite corrugated sandwich plates under thermal loading", Compos. Struct., 172, 173-189. https://doi.org/10.1016/j.compstruct.2017.03.051.
  11. Jones, R.M. (1975),, "Mechanics of Composite Materials", Taylor and Francis, Philadelphia.
  12. Katariya, P.V. and Panda, S.K. (2018), "Frequency and deflection responses of shear deformable skew sandwich curved shell panel: A finite element approach", Arab. J. Sci. Eng., https://doi.org/10.1007/s13369-018-3633-0
  13. Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016.
  14. Liu, Y. and Li, Y. (2013), "Vibration and acoustic response of rectangular sandwich plate under thermal environment", Shock Vib., 20, 1011-1030. https://doi.org/10.1155/2013/281723
  15. Mantari, J.L, Oktem, A.S. and Soares, C.G. (2012), "A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates", Int. J. Solids Struct., 49, 43-53. https://doi.org/10.1016/j.ijsolstr.2011.09.008
  16. Pandey, S. and Pradyumna, S. (2015), "A new $C^0$ higher-order layerwise finite element formulation for the analysis of laminated and sandwich plates", Compos. Struct., 131, 1-16. https://doi.org/10.1016/j.compstruct.2015.04.034
  17. Sadoune, M., Houari, M.S.A., Bakora, A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "Vibration analysis of thick orthotropic plates using quasi 3D sinusoidal shear deformation theory", Geomech. Eng., 16(2). https://doi.org/10.12989/gae.2018.16.2.141.
  18. Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007.
  19. Sayyad, A.S. and Ghugal, Y.M. (2017), "Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature", Compos. Struct., 171, 486-504. https://doi.org/10.1016/j.compstruct.2017.03.053.
  20. Sharma, N., Mahapatra, T.R., Panda, S.K. and Katariya, P. (2018), "Thermo-acoustic analysis of higher-order shear deformable laminated composite sandwich flat panel", J. Sandwich Struct. Mater., https://doi.org/10.1177/1099636218784846.
  21. Singh, V.K. and Panda, S.K. (2014), "Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels", Thin-Walled Struct., 85, 341-349. https://doi.org/10.1016/j.tws.2014.09.003.
  22. Solanki, M.K., Mishra, S.K., Shukla, K.K. and Singh, J. (2015), "Nonlinear free vibration of laminated composite and sandwich plates using multiquadric collocations", Mater. Today: Proc., 2, 3049-3055. https://doi.org/10.1016/j.matpr.2015.07.210.
  23. Taleb, Q., Houari, M.S.A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2018), "A new plate model for vibration response of advanced composite plates in thermal environment", Struct. Eng. Mech., 67(4). https://doi.org/ 10.12989/sem.2018.67.4.369.
  24. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017a), "Foam core composite sandwich plates and shells with variable stiffness: Effect of the curvilinear fiber path on the modal response", J. Sandwich Struct. Mater., https://doi.org/10.1177/1099636217693623.
  25. Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Reddy, J.N. (2017b), "An equivalent layer-wise approach for the free vibration analysis of thick and thin laminated and sandwich shells", Appl. Sci., 7(17), https://doi.org/10.3390/app7010017.
  26. Zhang, X., Yu, K., Bai, Y. and Zhao, R. (2015), "Thermal vibration characteristics of fiber-reinforced mullite sandwich structure with ceramic foams core", Compos. Struct., 131, 99-106. https://doi.org/10.1016/j.compstruct.2015.04.049.
  27. Zhang, Z.J., Han, B., Zhang, Q.C. and Jin, F. (2017), "Free vibration analysis of sandwich beams with honeycombcorrugation hybrid cores", Compos. Struct., 171, 335-344. https://doi.org/10.1016/j.compstruct.2017.03.045.
  28. Zhen, W., Wanji, C. and Xiaohui, R. (2010), "An accurate higherorder theory and $C^{0}$ finite element for free vibration analysis of laminated composite and sandwich plates", Compos. Struct., 92, 1299-1307. https://doi.org/10.1016/j.compstruct.2009.11.011.

Cited by

  1. Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.225
  2. Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body vol.21, pp.1, 2019, https://doi.org/10.12989/gae.2020.21.1.001
  3. A mechanical model to investigate Aedesaegypti mosquito bite using new techniques and its applications vol.11, pp.6, 2019, https://doi.org/10.12989/mwt.2020.11.6.399
  4. Mechanical and thermal buckling analysis of laminated composite plates vol.40, pp.5, 2019, https://doi.org/10.12989/scs.2021.40.5.697