Acknowledgement
Supported by : NSFC, Natural Science Foundation of Jiangsu Province
References
- Cao, H., Zhou, Y., Chen, Z. and Wahab, M.A. (2017), "Formfinding analysis of suspension bridges using an explicit Iterative approach", Struct. Eng. Mech., 62(1), 85-95. https://doi.org/10.12989/sem.2017.62.1.085.
- Chen, Z., Cao, H., Ye, K., Zhu, H. and Li, S. (2013), "Improved particle swarm optimization-based form-finding method for suspension bridge installation analysis", J. Comput. Civil Eng., 29(3), https://doi.org/10.1061/(ASCE)CP.1943-5487.0000354.
- Chen, Z., Cao, H. and Zhu, H. (2015), "An iterative calculation method for suspension bridge's cable system based on exact catenary theory", Baltic J. Road Bridge Eng., 8(3), 196-204. https://doi.org/10.3846/bjrbe.2013.25
- Irvine, H.M. (1981), Cable Structures, The MIT Press, Cambridge, Mass, USA.
- Jayaraman, H.B. and Knudson, W.C. (1981), "A curved element for the analysis of cable structures", Comp. Struc., 14(3), 25-333. https://doi.org/10.1016/0045-7949(81)90016-X.
- Jung, M.R., Min, D.J. and Kim, M.Y. (2013), "Nonlinear analysis methods based on the unstrained element length for determining initial shaping of suspension bridges under dead loads", Comp. Struct., 128(5), 272-285. https://doi.org/10.1016/j.compstruc.2013.06.014.
- Jung, M.R., Min, D.J. and Kim, M.Y. (2015), "Simplified analytical method for optimized initial shape analysis of selfanchored suspension bridges and its verification", Math. Prob. Eng., 2015, 1-14. http://dx.doi.org/10.1155/2015/923508.
- Karoumi, R. (2012), "Some modeling aspects in the nonlinear finite element analysis of cable supported bridges", Comp. Struct., 71(4), 397-412. https://doi.org/10.1016/S0045-7949(98)00244-2.
- Kim, K.S. and Lee, H.S. (2001), "Analysis of target configurations under dead loads for cable supported bridges", Comp. Struct., 79(29), 2681-2692. https://doi.org/10.1016/S0045-7949(01)00120-1.
- Kim, H.K. and Lee, M.J. (2002), "Chang SP. Non-linear shapefinding analysis of a self-anchored suspension bridge", Eng. Struct., 24(12), 1547-1559. https://doi.org/10.1016/S0141-0296(02)00097-4.
- Lasdon, L.S., Fox, R.L. and Ratner, M.W. (1974), "Nonlinear optimization using the generalized reduced gradient method", RAIRO Oper. Res. Rech. Oper., 8(3), 73-103.
- Lasdon, L.S., Waren, A.D., Jain, A. and Ratner, M. (1978), "Design and testing of a generalized reduced gradient code for nonlinear programming", ACM Trans. Math. Softw., 4(1), 34-50. https://apps.dtic.mil/dtic/tr/fulltext/u2/a025724.pdf. https://doi.org/10.1145/355769.355773
- O'Brien, T. (1964), "General solution of suspended cable problems", J. Struct. Div., 93(ST1), 1-26. https://doi.org/10.1061/JSDEAG.0001574
- O'Brien, T. and Francis, A.J. (1964), "Cable movements under two-dimensional loads", J. Struct. Div., 90(ST3), 89-123.
- Sun, Y., Zhu, H.P. and Xu, D. (2014), "New method for shape finding of self-anchored suspension bridges with three-dimensionally curved cables", J. Bridge Eng., 20(2), https://doi.org/10.1061/(ASCE)BE.1943-5592.0000642.
- Thai, H.T. and Kim, S.E. (2011), "Nonlinear static and dynamic analysis of cable structures", Finite Elem. Anal. Des., 47(3), 237-246. https://doi.org/10.1016/j.finel.2010.10.005.
- Thai, H.T. and Choi, D.H. (2013), "Advanced analysis of multispan suspension bridges", J. Constr. Steel Res., 90(41), 29-41. https://doi.org/10.1016/j.jcsr.2013.07.015
- Wang, P.H. and Yang, C.G. (1996), "Parametric studies on cablestayed bridges", Comp. Struct., 60(2), 243-260. https://doi.org/10.1016/0045-7949(95)00382-7.
- Wang, S., Zhou, Z., Gao, Y. and Huang, Y. (2015), "Analytical calculation method for the preliminary analysis of self-anchored suspension bridges", Math. Prob. Eng., 2015(2), 1-12. http://dx.doi.org/10.1155/2015/918649.
- Wilde, D.J. and Beightler, C.S. (1967), Foundations of Optimization, Prentice-Hall Inc., Englewood Cliffs, NJ, USA.
- Zhang, W.M., Shi, L.Y., Li, L. and Liu, Z. (2018), "Methods to correct unstrained hanger lengths and cable clamps' installation positions in suspension bridges", Eng. Struct., 171, 202-213. https://doi.org/10.1016/j.engstruct.2018.05.039.