DOI QR코드

DOI QR Code

Mutation in gyrA gene of nalidixic acid-resistant Salmonella isolates isolated from poultry slaughterhouse

닭 도축장에서 분리한 nalidixic acid 내성 Salmonella 균의 gyrA 유전자 돌연변이

  • Cho, Jae-Keun (Metropolitan Health & Environmental Research Institute) ;
  • Son, Kyu-Hee (College of Veterinary Medicine, Kyoungpook National University) ;
  • Kim, Kyung-Hee (Metropolitan Health & Environmental Research Institute) ;
  • Kim, Jeong-Mi (Metropolitan Health & Environmental Research Institute) ;
  • Park, Dae-Hyun (Metropolitan Health & Environmental Research Institute) ;
  • Lee, Jung-Woo (Metropolitan Health & Environmental Research Institute)
  • 조재근 (대구광역시보건환경연구원) ;
  • 손규희 (경북대학교 수의과대학) ;
  • 김경희 (대구광역시보건환경연구원) ;
  • 김정미 (대구광역시보건환경연구원) ;
  • 박대현 (대구광역시보건환경연구원) ;
  • 이정우 (대구광역시보건환경연구원)
  • Received : 2019.09.09
  • Accepted : 2019.09.19
  • Published : 2019.09.30

Abstract

The objective of this study was to identify mutations in the quinolone resistance determining region (QRDR) of the gyrA, gyrB, parC and parE genes, and the presence of plasmid-mediated quinolone resistance (PMQR) genes: qnrA, qnrB, qnrS, aac(6')-lb-cr and qepA in 40 nalidixic acid- resistant ($NA^R$) Salmonella isolates isolated from poultry slaughterhouse. The MIC of NA and ciprofloxacin for 40 $NA^R$ Salmonella isolates was $128{\sim}512{\mu}g/mL$ and < $0.125{\sim}0.25{\mu}g/mL$, respectively. The Salmonella isolates were resistant to NA (100%), gentamicin (5.0%) and ampicillin (2.5%). All $NA^R$ Salmonella isolates represented point mutation in codons Aspartic acid(Asp)-87 (90%) and Serine(Ser)-83 (10%) of QRDR of gyrA gene: $Asp87{\rightarrow}glycine$, $Ser83{\rightarrow}tyrosine$. No mutations were observed in QRDR of the gyrB, parC and parE gene. Moreover PMQR genes was not found in any of the tested isolates. Our findings showed that DNA gyrase is the primary target of quinolone resistance and a single mutation in codon Asp87 and Ser83 of the gyrA gene can confer resistance to NA and reduced susceptibility ciprofloxacin in Salmonella isolates.

Keywords

References

  1. Bae DH, Baek HJ, Jeong SJ, Lee YJ. 2013a. Amino acid substitutions in gyrA and parC associated with quinolone resistance in nalidixic acid-resistant Salmonella isolates. Ir Vet J 66: 23. https://doi.org/10.1186/2046-0481-66-23
  2. Bae DH, Dessie HK, Baek HJ, Kim SG, Lee HS, Lee YJ. 2013b Prevalence and characteristics of Salmonella spp. isolated from poultry slaughterhouses in Korea. J Vet Med Sci 75: 1193-1200. https://doi.org/10.1292/jvms.13-0093
  3. Campioni F, Souza RA, Martins VV, Stehling EG, Bergamini AMM, Falcao JP. 2017. Prevalence of gyrA mutations in nalidixic acid-resistant strains of Salmonella Enteritidis isolated from humans, food, chickens, and the farm environment in Brazil. Microb Drug Resist 23: 421-428. https://doi.org/10.1089/mdr.2016.0024
  4. Chiu CH, Ou JT. 1996. Rapid identification of Salmonella serovars in feces by specific detection of virulence genes, invA and spvC, by an enrichment broth culture-multiplex PCR combination assay. J Clin Microbiol 34: 2619-2622. https://doi.org/10.1128/JCM.34.10.2619-2622.1996
  5. Cho JK, Kim JM, Kim HD, Kim KH, Lim HS, Yang CY. 2019. Characterization of plasmid- mediated quinolone resistance genes in Enterobacteriaceae isolated from companion animals. Korean J Vet Serv 42: 17-24. https://doi.org/10.7853/KJVS.2019.42.1.17
  6. Choi SH, Woo JH, Lee JE, Park SJ, Choo EJ, Kwak YG, Kim MN, Choi MS, Lee NY, Lee BK, Kim NJ, Jeong JY, Ryu J, Kim YS. 2005. Increasing incidence of quinolone resistance in human nontyphoid Salmonella enterica isolates in Korea and mechanisms involved in quinolone resistance. J Antimicrob Chemother 56: 1111-1114. https://doi.org/10.1093/jac/dki369
  7. Chung HS, Lee HM, Lee YS, Yong DE, Jeong SH, Lee BK, Jung SC, Lim SK, Lee KW, Chong YS. 2012. A korean nationwide surveillance study for non-typhoidal Salmonella isolated in humans and food animals from 2006 to 2008: extended-spectrum ${\beta}$-lactamase, plasmid- mediated AmpC ${\beta}$-lactamase and plasmid-mediated quinolone resistance qnr genes Korean J Clin Microbiol 15: 14-20. https://doi.org/10.5145/KJCM.2012.15.1.14
  8. CLSI. Clinical and Laboratory Standards Institute. 2013. Performance standards for antimicrobial disk and dilution susceptibility tests for bacterial isolated from animals; approved standard. fourth edition and supplement, CLSI document VET01-A4 (standard) and VET01-S2 (supplement), in Clinical and Laboratory Standards Institute (Wayne, PA).
  9. de Souza RB, Magnani M, Ferrari RG, Kottwitz LB, Sartori D, Tognim MC, de Oliveira TC. 2011. Detection of quinolone-resistance mutations in Salmonella spp. strains of epidemic and poultry origin. Braz J Microbiol 42: 211-215. https://doi.org/10.1590/S1517-83822011000100026
  10. Eaves DJ, Randall L, Gray DT, Buckley A, Woodward MJ, White AP, Piddock LJ. 2004. Prevalence of mutations within the quinolone resistance-determining region of gyrA, gyrB, parC, and parE and association with antibiotic resistance in quinolone-resistant Salmonella enterica. Antimicrob Agents Chemother 48: 4012-4015. https://doi.org/10.1128/AAC.48.10.4012-4015.2004
  11. Ferrari R, Galiana A, Cremades R, Rodriguez JC, Magnani M, Tognim MC, Oliveira TC, Royo G. 2013. Plasmid-mediated quinolone resistance (PMQR) and mutations in the topoisomerase genes of Salmonella enterica strains from Brazil. Braz J Microbiol 44: 651-656. https://doi.org/10.1590/S1517-83822013000200046
  12. Giraud E, Baucheron S, Cloeckaert A. 2006. Resistance to fluoroquinolones in Salmonella: emerging mechanisms and resistance prevention strategies. Microbes Infect 8: 1937-1944. https://doi.org/10.1016/j.micinf.2005.12.025
  13. Griggs DJ, Gensberg K, Piddock LJ. 1996. Mutations in gyrA gene of quinolone-resistant Salmonella serotypes isolated from humans and animals. Antimicrob Agents Chemother 40: 1009-1013. https://doi.org/10.1128/AAC.40.4.1009
  14. Guo X, Wang H, Cheng Y, Zhang W, Luo Q, Wen G, Wang G, Shao H, Zhang T. 2018. Quinolone resistance phenotype and genetic characterization of Salmonella enterica serovar Pullorum isolates in China, during 2011 to 2016. BMC Microbiol 18: 225. https://doi.org/10.1186/s12866-018-1368-4
  15. Im MC, Jeong SJ, Kwon YK, Jeong OM, Kang MS, Lee YJ. 2015. Prevalence and characteristics of Salmonella spp. isolated from commercial layer farms in Korea. Poult Sci 94: 1691-1698. https://doi.org/10.3382/ps/pev137
  16. Kim JH, Cho JK, Kim KS. 2013. Prevalence and characterization of plasmid-mediated quinolone resistance genes in Salmonella isolated from poultry in Korea. Avian Pathol 42: 221-229. https://doi.org/10.1080/03079457.2013.779636
  17. Kim SR, Nam HM, Jang GC, Kim AR, Kang MS, Chae MH, Jung SC, Kang DJ, Kim JG. 2011. Antimicrobial resistance in Salmonella isolates from food animals and raw meats in Korea during 2010. Kor J Vet Publ Hlth 35: 246-254.
  18. Lee K, Lee M, Lim J, Jung J, Park Y, Lee Y. 2008. Contamination of chicken meat with Salmonella enterica serovar Haardt with nalidixic acid resistance and reduced fluoroquinolone susceptibility. J Microbiol Biotechnol 18: 1853-1857. https://doi.org/10.4014/jmb.0800.221
  19. Lee SK, Choi D, Kim HS, Kim DH, Seo KH. 2016. Prevalence, seasonal occurrence, and antimicrobial resistance of Salmonella spp. isolates recovered from chicken carcasses sampled at major poultry pocessing plants of South Korea. Foodborne Pathog Dis 13: 544-550. https://doi.org/10.1089/fpd.2016.2144
  20. Ngoi ST, Thong KL. 2014. High resolution melting analysis for rapid mutation screening in gyrase and Topoisomerase IV genes in quinolone-resistant Salmonella enterica. Biomed Res Int 2014: 718084. doi: 10.1155/2014/718084.
  21. Oteo J, Aracil B, Alos JI, Gomez-Garces JL. 2000. High rate of resistance to nalidixic acid in Salmonella enterica: its role as a marker of resistance to fluoroquinolones. Clin Microbiol Infect 6: 273-276. https://doi.org/10.1046/j.1469-0691.2000.00058-3.x
  22. Piddock LJ, Ricci V, McLaren I, Griggs DJ. 1998. Role of mutation in the gyrA and parC genes of nalidixic acid-resistant Salmonella serotypes isolated from animals in the United Kingdom. J Antimicrob Chemother 41: 635-641. https://doi.org/10.1093/jac/41.6.635
  23. Piddock LJ. 1999. Mechanisms of fluoroquinolone resistance: an update 1994-1998. Drugs 58(S2): 11-18. https://doi.org/10.2165/00003495-199958002-00003
  24. Piddock LJ. 2002. Fluoroquinolone resistance in Salmonella serovars isolated from humans and food animals. FEMS Microbiol Rev 26: 3-16. https://doi.org/10.1111/j.1574-6976.2002.tb00596.x
  25. Rahn K, De Grandis SA, Clarke RC, McEwen SA, Galan JE, Ginocchio C, Curtiss R, Gyles CL. 1992. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes 6:271-279. https://doi.org/10.1016/0890-8508(92)90002-F
  26. Rodriguez-Martinez JM, Cano ME, Velasco C, Martinez-Martinez L, Pascual A. 2011. Plasmid- mediated quinolone resistance: an update. J Infect Chemother 17: 149-182. https://doi.org/10.1007/s10156-010-0120-2
  27. Sjolund-Karlsson M, Howie R, Rickert R, Krueger A, Tran TT, Zhao S, Ball T, Haro J, Pecic G, Joyce K, Fedorka-Cray PJ, Whichard JM, McDermott PF. 2010. Plasmid-mediated quinolone resistance among non-typhi Salmonella enterica isolates, USA. Emerg Infect Dis 16: 1789-1791. https://doi.org/10.3201/eid1611.100464
  28. Stevenson JE, Gay K, Barrett TJ, Medalla F, Chiller TM, Angulo FJ. 2007. Increase in nalidixic acid resistance among non-Typhi Salmonella enterica isolates in the United States from 1996 to 2003. Antimicrob Agents Chemother 51: 195-197. https://doi.org/10.1128/AAC.00222-06
  29. Tamang MD, Nam HM, Kim A, Lee HS, Kim TS, Kim MJ, Jang GC, Jung SC, Lim SK. 2011. Prevalence and mechanisms of quinolone resistance among selected nontyphoid Salmonella isolated from food animals and humans in Korea. Foodborne Pathog Dis 8: 1199-1206. https://doi.org/10.1089/fpd.2011.0899
  30. Timoney JF, Gillespie JH, Scott FW, Barlough JE. 1988. Hagan and Bruner's microbiology and infectious diseases of domestic animals. 8th ed. pp. 74-86. Cornell University Press, Ithaca and London.
  31. Wolfson JS, Hooper DC. 1989. Fluoroquinolone antimicrobial agents. Clin Microbiol Rev 2: 378-424. https://doi.org/10.1128/CMR.2.4.378
  32. Yang HY, Lee SM, Eark EJ, Kim JH, Lee JG. 2009. Analysis of antimicrobial resistance and PFGE patterns of Salmonella spp. isolated from chickens at slaughterhouse in Incheon area. Korean J Vet Serv 32: 325-334.
  33. Zhu Y, Lai H, Zou L, Yin S, Wang C, Han X, Xia X, Hu K, He L, Zhou K, Chen S, Ao X, Liu S. 2017. Antimicrobial resistance and resistance genes in Salmonella strains isolated from broiler chickens along the slaughtering process in China. Int J Food Microbiol 259: 43-51. https://doi.org/10.1016/j.ijfoodmicro.2017.07.023