DOI QR코드

DOI QR Code

Effect of time harmonic sources on transversely isotropic thermoelastic thin circular plate

  • Lata, Parveen (Department of Basic and Applied Science, Punjabi University) ;
  • Kaur, Iqbal (Department of Basic and Applied Science, Punjabi University)
  • 투고 : 2019.07.18
  • 심사 : 2019.09.02
  • 발행 : 2019.09.20

초록

The present research deals with the deformation in transversely isotropic thin circular thermoelastic rotating plate due to time-harmonic sources. Frequency effect in the presence of rotation and two temperature is studied under thermally insulated as well as isothermal boundaries. The Hankel transform technique is used to find a solution to the problem. The displacement components, stress components, and conductive temperature distribution with the radial distance are computed in the transformed domain and further calculated in the physical domain using numerical inversion techniques. Some specific cases are also figured out from the current research.

키워드

참고문헌

  1. Abbas, I.A. (2007), "Finite element analysis of the thermoelastic interactions in an unbounded body with a cavity", Forschung im Ingenieurwesen, 71(3-4), 215-222. https://doi.org/10.1007/s10010-007-0060-x.
  2. Abbas, I.A. (2014), "Three-phase lag model on thermoelastic interaction in an unbounded fiberreinforced anisotropic medium with a cylindrical cavity", J. Comput. Theor. Nanosci., 11(4), 987-992. https://doi.org/10.1166/jctn.2014.3454.
  3. Abbas, I.A. (2015), "A dual phase lag model on thermoelastic interaction in an infinite fiberreinforced anisotropic medium with a circular hole", Mech. Based Des. Struct. Machines, 43(4), 501-513. https://doi.org/10.1080/15397734.2015.1029589.
  4. Abbas, I.A. and Youssef, H.M. (2009), "Finite element analysis of two-temperature generalized magnetothermoelasticity", Arch. Appl. Mech., 79(10), 917-925. https://doi.org/10.1007/s00419-008-0259-9.
  5. Abd-Alla, A.E.N.N. and Alshaikh, F. (2015), The Mathematical Model of Reflection of Plane Waves in a Transversely Isotropic Magneto-Thermoelastic Medium under Rotation, in New Developments in Pure and Applied Mathematics, 282-289.
  6. Ahire, Y.M., Hamoud, A.A. and Ghadle, K.P. (2019), "Analysis of thermal stresses in thin circular plate due to moving heat source", Int. J. Mech. Product. Eng. Res. Develop., 9(3), 1285-1292. https://doi.org/10.24247/ijmperdjun2019134
  7. Akbas, S.D. (2017), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., 6(4), 399-415. http://doi.org/10.12989/csm.2017.6.4.399.
  8. Ali Houari, M.B., Bakora, A. amd Tounsi, A.A. (2018), "Mechanical and thermal stability investigation of functionally graded plates resting on elastic foundations", Struct. Eng. Mech., 65(4). http://doi.org/10.12989/sem.2018.65.4.423.
  9. Alzahrani, F.S. and Abbas, I.A. (2016), "The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory", Steel Compos. Struct., 22(2), 369-386. https://doi.org/10.12989/scs.2016.22.2.369.
  10. Bhad, P.P. and Varghese, V. (2014), "Thermoelastic analysis on a circular plate subjected to annular heat supply", Glob. J. Res. Anal., 6(3), 141-145.
  11. Chauthale, S. and Khobragade, N.W. (2017), "Thermoelastic response of a thick circular plate due to heat generation and its thermal stresses", Glob. J. Pure Appl. Math., 13, 7505-7527.
  12. Dhaliwal, R. and Singh, A. (1980), Dynamic Coupled Thermoelasticity, Hindustan Publication Corporation, New Delhi, India.
  13. Ezzat, M.A. and El-Bary, A.A. (2017a), "A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer", Steel Compos. Struct., 25(2), 177-186. http://doi.org/10.12989/scs.2017.25.2.177.
  14. Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2017), "Twotemperature theory in Green-Naghdi thermoelasticity with fractional phase-lag heat transfer", Microsyst. Technol., 24(2), 951-961. https://doi.org/10.1007/s00542-017-3425-6.
  15. Ezzat, M.A., El-Karamany, A.S. and Ezzat, S.M. (2012), "Twotemperature theory in magneto-thermoelasticity with fractional order dual-phase-lag heat transfer", Nucl. Eng. Des., 252, 267-277. https://doi.org/10.1016/j.nucengdes.2012.06.012.
  16. Gaikwad, K.R. (2016), "Two-dimensional steady-state temperature distribution of a thin circular plate due to uniform internal energy generation", Appl. Interdisciplin. Math., 3(1), 1-10. https://doi.org/10.1080/23311835.2015.1135720.
  17. Gaikwad, M. and Deshmukh, K.C. (2005), "Thermal deflection of an inverse thermoelastic problem in a thin isotropic circular plate", Appl. Math. Modell., 29(9), 797-804. https://doi.org/10.1016/j.apm.2004.10.012.
  18. Gaikwad, P.B., Ghadle, K.P. and Mane, J.K. (2012), "An inverse thermoelastic problem of circular plate", Bull. Soc. Math. Services Standards, 1(1), 1-5. https://doi.org/10.18052/www.scipress.com/BSMaSS.1.1
  19. Hassan, M., Marin, M., Ellahi, R. and Alamri, S. (2018), "Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/water hybrid-nanofluids", Heat Trans. Res., 49(18), 1837-1848. https://doi.org/10.1615/HeatTransRes.2018025569.
  20. Heydari, A. (2018), "Size-dependent damped vibration and buckling analyses of bidirectional functionally graded solid circular nano-plate with arbitrary thickness variation", Struct. Eng. Mech., 68(2), 171-182. http://doi.org/10.12989/sem.2018.68.2.171.
  21. Honig, G.H. (1984), "A method for the inversion of Laplace Transform", J. Comput. Appl. Math., 10, 113-132. https://doi.org/10.1016/0377-0427(84)90075-X.
  22. Kar, A. and Kanoria, M. (2011), "Analysis of thermoelastic response in a fiber reinforced thin annular disc with threephase-lag effect", Eur. J. Pure Appl. Math., 4(3), 304-321.
  23. Kaur, I. and Lata, P. (2019a), "Effect of hall current on propagation of plane wave in transversely isotropic thermoelastic medium with two temperature and fractional order heat transfer", SN Appl. Sci., 1(8), 900. https://doi.org/10.1007/s42452-019-0942-1.
  24. Kaur, I. and Lata, P. (2019b), "Transversely isotropic thermoelastic thin circular plate with constant and periodically varying load and heat source", Int. J. Mech. Mater. Eng., 14(10), 1-13. https://doi.org/10.1186/s40712-019-0107-4.
  25. Keivani, A., Shooshtari, A. and Sani, A.A. (2014), "Forced vibration analysis of a dam-reservoir interaction problem in frequency domain", Coupled Syst. Mech., 3(4), 385-403. http://doi.org/10.12989/csm.2014.3.4.385.
  26. Kumar, R., Sharma, N. and Lata, P. (2016a), "Effect of thermal and diffusion phase-lags in a thick circular plate with axisymmetric heat supply", Multidisciplin. Modell. Mater. Struct., 12(2), 275-290. https://doi.org/10.1080/23311835.2015.1129811.
  27. Kumar, R., Sharma, N. and Lata, P. (2016b), "Thermomechanical interactions in transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Modell., 40(13-14), 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061.
  28. Kumar, R., Sharma, N. and Lata, P. (2017), "Effects of Hall current and two temperatures in transversely isotropic magnetothermoelastic with and without energy dissipation due to Ramp type heat", Mech. Adv. Mater. Struct., 24(8), 625-635. https://doi.org/10.1080/15376494.2016.1196769.
  29. Lata, P. and Kaur, I. (2018), "Effect of hall current in Transversely Isotropic magnetothermoelastic rotating medium with fractional order heat transfer due to normal force", Adv. Mater. Res., 7(3), 203-220. https://doi.org/10.12989/amr.2018.7.3.203.
  30. Lata, P. and Kaur, I. (2019a), "Transversely isotropic thick plate with two temperature and GN type-III in frequency domain", Coupled Syst. Mech., 8(1), 55-70. http://doi.org/10.12989/csm.2019.8.1.055.
  31. Lata, P. and Kaur, I. (2019b), "Thermomechanical interactions in transversely isotropic thick circular plate with axisymmetric heat supply", Struct. Eng. Mech., 69(6), 607-614. http://doi.org/10.12989/sem.2019.69.6.607.
  32. Lata, P. and Kaur, I. (2019c), "Transversely isotropic magneto thermoelastic solid with two temperature and without energy dissipation in generalized thermoelasticity due to inclined load", SN Appl. Sci., 1(5), 426. https://doi.org/10.1007/s42452-019-0438-z.
  33. Lata, P. and Kaur, I. (2019d), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., 70(2), 245-255. http://doi.org/10.12989/sem.2019.70.2.245.
  34. Liu, J., Cao, L. and Chen, Y.F. (2019), "Analytical solution for free vibration of multi-span continuous anisotropic plates by the perturbation method", Struct. Eng. Mech., 69(3), 283-291. http://doi.org/10.12989/sem.2019.69.3.283.
  35. Mahmoud, S. (2012), "Influence of rotation and generalized magneto-thermoelastic on Rayleigh waves in a granular medium under effect of initial stress and gravity field", Meccanica, 47(7), 1561-1579. https://doi.org/10.1007/s11012-011-9535-9.
  36. Marin, M. (1994), "The Lagrange identity method in thermoelasticity of bodies with microstructure", Int. J. Eng. Sci., 32(8), 1229-1240. https://doi.org/10.1016/0020-7225(94)90034-5.
  37. Marin, M. (1999), "An evolutionary equation in thermoelasticity of dipolar bodies", J. Math. Phys., 40(3), 1391-1399. https://doi.org/10.1063/1.532809.
  38. Marin, M. (2016), "An approach of a heat flux dependent theory for micropolar porous media", Meccanica, 51(5), 1127-1133. https://doi.org/10.1007/s11012-015-0265-2.
  39. Marin, M. and Craciun, E. (2017), "Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials", Compos. Part B Eng., 126, 27-37. https://doi.org/10.1016/j.compositesb.2017.05.063.
  40. Marin, M., Baleanu, D. and Vlase, S. (2017), "Effect of microtemperatures for micropolar thermoelastic bodies", Struct. Eng. Mech., 61(3), 381-387. https://doi.org/10.12989/sem.2017.61.3.381.
  41. Marin, M., Craciun, E. and Pop, N. (2016), "Considerations on mixed initial-boundary value problems for micropolar porous bodies", Dyn. Syst. Appl., 25(1-2), 175-196.
  42. Mohamed, R.A., Abbas, I.A. and Abo-Dahab, S. (2009), "Finite element analysis of hydromagnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction", Commun. Nonlin. Sci. Numer. Simul., 14(4), 1385-1395. https://doi.org/10.1016/j.cnsns.2008.04.006.
  43. Othman, M. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory", Results Phys., 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012.
  44. Othman, M.I. and Abbas, I. A. (2012), "Generalized thermoelasticity of thermal-shock problem in a nonhomogeneous isotropic hollow cylinder with energy dissipation", Int. J. Thermophys., 33(5), 913-923. https://doi.org/10.1007/s10765-012-1202-4.
  45. Ozdemir, Y.I. (2018), "Using fourth order element for free vibration parametric analysis of thick plates resting on elastic foundation", Struct. Eng. Mech., 65(3), 213-222. http://doi.org/10.12989/sem.2018.65.3.213 .
  46. Palani, G. and Abbas, I.A. (2009), "Free convection MHD flow with thermal radiation from an impulsively started vertical plate", Nonlin. Anal. Modell. Control, 14(1), 73-84. https://doi.org/10.15388/NA.2009.14.1.14531
  47. Parveen, H., Lamba, N.K. and Khobragade, N.W. (2012), "Thermal deflection of a thin circular plate with radiation", Afr. J. Math. Comput. Sci. Res., 5(4), 66-70. https://doi.org/10.5897/AJMCSR12.010.
  48. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1986), Numerical Eecipes in Fortran, Cambridge University Press.
  49. Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22, 107-117.
  50. Taleb, O., Houari, M.S., Bessaim, A., Tounsi, A. and Mahmoud, A.S. (2018), "A new plate model for vibration response of advanced composite plates in thermal environment", Struct. Eng. Mech., 67(4), 369-383. http://doi.org/10.12989/sem.2018.67.4.369.
  51. Tikhe, A.K. and Deshmukh, K. (2006), "Inverse heat conduction problem in a thin circular plate and its thermal deflection", Appl. Math. Modell., 30(6), 554-560. https://doi.org/10.1016/j.apm.2005.12.014.
  52. Tikhe, A.K. and Deshmukh, K.C. (2005), "Inverse transient thermoelastic deformations in thin circular plates", Sadhana, 30(5), 661-671. https://doi.org/10.1007/BF02703513.
  53. Tripathi, J.J., Warbhe, S.D., Deshmukh, K.C. and Verma, J. (2017a), "Fractional order thermoelastic deflection in a thin circular plate", Appl. Appl. Math., 12(2), 898-909.
  54. Tripathi, J.J., Warbhe, S.D., Deshmukh, K.C. and Verma, J. (2017b), "Fractional order theory of thermal stresses to A 2 D problem for a thin hollow circular disk", Glob. J. Pure Appl. Math., 13(9), 6539-6552.
  55. Ventsel, E. and Krauthammer, T. (2001), Thin Plates and Shells: Theory: Analysis, and Applications, Taylor & Francis.
  56. Vinyas, M. and Kattimani, S. (2017), "Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment", Coupled Syst. Mech., 6(3), 351-367. https://doi.org/10.12989/csm.2017.6.3.351.
  57. Zenkour, A.M. and Abbas, I.A. (2014), "A generalized thermoelasticity problem of an annular cylinder with temperature-dependent density and material properties", Int. J. Mech. Sci., 84, 54-60. https://doi.org/10.1016/j.ijmecsci.2014.03.016.
  58. Zhao, F. (2008), "Nonlinear solutions for circular membranes and thin plates", Proceedings of the Modeling, Signal Processing, and Control for Smart Structures 2008, San Diego, California, U.S.A., March.

피인용 문헌

  1. Thermomechanical interactions in transversely isotropic magneto-thermoelastic medium with fractional order generalized heat transfer and hall current vol.27, pp.1, 2020, https://doi.org/10.1080/25765299.2019.1703494
  2. Deformation in transversely isotropic thermoelastic thin circular plate due to multi-dual-phase-lag heat transfer and time-harmonic sources vol.27, pp.1, 2020, https://doi.org/10.1080/25765299.2020.1781328
  3. Fractional order thermoelastic wave assessment in a two-dimension medium with voids vol.21, pp.1, 2020, https://doi.org/10.12989/gae.2020.21.1.085
  4. Transversely isotropic Euler Bernoulli thermoelastic nanobeam with laser pulse and with modified three phase lag Green Nagdhi heat transfer vol.40, pp.6, 2019, https://doi.org/10.12989/scs.2021.40.6.829