DOI QR코드

DOI QR Code

Fouling resistant membrane tailored by polyethylene glycol in oxidative environment for desalination

  • Kavaiya, Ashish R. (Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR)) ;
  • Raval, Hiren D. (Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR))
  • Received : 2018.11.21
  • Accepted : 2019.05.03
  • Published : 2019.09.25

Abstract

Surface modification is very efficient and scalable approach to achieve improved membrane performance. We treated Reverse Osmosis Thin Film Composite (TFC RO) membrane with various concentrations of Polyethylene Glycol (PEG), a hydrophilic polymer after activation with sodium hypochlorite. This treatment resulted in an increment of the water flux by 43% and the salt rejection by 2.36% for the 3000 mg/l PEG-treated membrane. Further, these PEG-treated membranes were exposed to a mixture of 3000 mg/l PEG and 1000 mg/l sodium hypochlorite for 1 hour. Further modification of this membrane by PEG and sodium hypochlorite mixture increased the water permeance up to 133% when compared with the virgin TFC RO membrane. We characterized the treated membranes to understand the changes in wettability by contact angle analysis, changes in surface morphology and roughness by scanning electron microscope (SEM) and atomic force microscope (AFM) analysis.

Keywords

References

  1. Bucs, S.S., Linares, R.V., Farhat, N., Matin, A., Khan, Z., van Loosdrecht, M. and Vrouwenvelder, J.S. (2017), "Coating of reverse osmosis membranes with amphiphilic copolymers for biofouling control", Desalination Water Treat., 68, 1-11. https://doi.org/ 10.5004/dwt.2017.20369
  2. Chinpa, W., Quemener, D., Beche, E., Jiraratananon, R. and Deratani, A. (2010), "Preparation of poly (etherimide) based ultrafiltration membrane with low fouling property by surface modification with poly (ethylene glycol)", J. Membr. Sci., 365(1-2), 89-97. https://doi.org/10.1016/j.memsci.2010.08.040.
  3. Creber, S.A., Vrouwenvelder, J.S., Van Loosdrecht, M.C.M. and Johns, M.L. (2010), "Chemical cleaning of biofouling in reverse osmosis membranes evaluated using magnetic resonance imaging", J. Membr. Sci., 362(1-2), 202-210. https://doi.org/10.1016/j.memsci.2010.06.052.
  4. Di Vincenzo, M., Barboiu, M., Tiraferri, A., and Legrand, Y.M. (2017), "Polyol-functionalized thin-film composite membranes with improved transport properties and boron removal in reverse osmosis", J. Membr. Sci., 540, 71-77. https://doi.org/10.1016/j.memsci.2017.06.034.
  5. Freger, V., Gilron, J. and Belfer, S. (2002), "TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study", J. Membr. Sci., 209(1), 283-292. https://doi.org/10.1016/S0376-7388(02)00356-3.
  6. Gholami, S., Rezvani, A., Vatanpour, V., and Cortina, J.L. (2018), "Improving the chlorine resistance property of polyamide TFC RO membrane by polyethylene glycol diacrylate (PEGDA) coating", Desalination, 443, 245-255. https://doi.org/10.1016/j.desal.2018.06.004,
  7. Greenlee, L.F., Lawler, D.F., Freeman, B.D., Marrot, B. and Moulin, P. (2009), "Reverse osmosis desalination: water sources, technology, and today's challenges", Water Res., 43(9), 2317-2348. https://doi.org/10.1016/j.watres.2009.03.010.
  8. Kang, G., Liu, M., Lin, B., Cao Y. and Yuan, Q. (2007), "A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly (ethylene glycol)", Polymer, 48(5), 1165-1170. https://doi.org/10.1016/j.polymer.2006.12.046.
  9. Kang, G., Yu, H., Liu, Z. and Cao, Y. (2011), "Surface modification of a commercial thin film composite polyamide reverse osmosis membrane by carbodiimide-induced grafting with poly (ethylene glycol) derivatives", Desalination, 275(1-3), 252-259. https://doi.org/10.1016/j.desal.2011.03.007.
  10. Li, D. and Wang, H. (2010), "Recent developments in reverse osmosis desalination membranes", J. Mater. Chem., 20(22), 4551-4566. https://doi.org/10.1039/B924553G.
  11. Raval, H.D., Trivedi, J.J., Joshi, S.V. and Devmurari, C.V. (2010), "Flux enhancement of thin film composite RO membrane by controlled chlorine treatment", Desalination, 250(3), 945-949. https://doi.org/10.1016/j.desal.2009.05.005.
  12. Raval, H.D., Samnani, M.D. and Gauswami, M.V. (2018), "Surface modification of thin film composite reverse osmosis membrane by glycerol assisted oxidation with sodium hypochlorite", Appl. Surf. Sci., 427, 37-44. https://doi.org/10.1016/j.apsusc.2017.08.132.
  13. Ray, J.R., Whitney, W. and Young-Shin, J. (2017), "Antiscaling efficacy of CaCO3 and CaSO4 on polyethylene glycol (PEG)-modified reverse osmosis membranes in the presence of humic acid: interplay of membrane surface properties and water chemistry", Phys. Chem. Chem. Phys., 19, 5647-5657. https://doi.org/ 10.1039/C6CP08569E
  14. Sagle, A.C., Van Wagner, E.M., Ju, H., McCloskey, B.D., Freeman, B.D. and Sharma, M.M. (2009), "PEG-coated reverse osmosis membranes: desalination properties and fouling resistance", J. Membr. Sci., 340(1-2), 92-108. https://doi.org/10.1016/j.memsci.2009.05.013.
  15. Subramani, A. and Hoek, E.M. (2010), "Biofilm formation, cleaning, re-formation on polyamide composite membranes", Desalination, 257(1-3), 73-79. https://doi.org/10.1016/j.desal.2010.03.003
  16. Tang, C.Y., Kwon, Y.N. and Leckie, J.O. (2007), "Probing the nano-and micro-scales of reverse osmosis membranes-A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements", J. Membr. Sci., 287(1), 146-156. https://doi.org/10.1016/j.memsci.2006.10.038.