DOI QR코드

DOI QR Code

Organotemplate-free synthesis of ZSM-5 membrane for pervaporation dehydration of isopropanol

  • Li, Jiajia (Collaborative Innovation Center of Fine Chemical and Materials Technology, School of Chemistry and Chemical Engineering, Huangshan University) ;
  • Li, Liangqing (Collaborative Innovation Center of Fine Chemical and Materials Technology, School of Chemistry and Chemical Engineering, Huangshan University) ;
  • Yang, Jianhua (Institute of Adsorption and Inorganic Membrane, State Key Laboratory of Fine Chemicals, Dalian University of Technology) ;
  • Lu, Jinming (Institute of Adsorption and Inorganic Membrane, State Key Laboratory of Fine Chemicals, Dalian University of Technology) ;
  • Wang, Jinqu (Institute of Adsorption and Inorganic Membrane, State Key Laboratory of Fine Chemicals, Dalian University of Technology)
  • Received : 2018.08.30
  • Accepted : 2019.04.12
  • Published : 2019.09.25

Abstract

ZSM-5 membrane was prepared on tubular macroporous ${\alpha}$-alumina support using a different synthesis route. The effects of organic template agent and Si/Al ratio of the synthesis gel on morphology, structure, and separation performance of the ZSM-5 membrane used for dehydration of isopropanol were investigated. High water perm-selectivity ZSM-5 membrane with a thickness of about $3.0{\mu}m$ and a low Si/Al ratio of 10.1 was successfully prepared from organotemplate-free synthesis gel with a molar composition of $SiO_2$ : $0.050Al_2O_3$ : $0.21Na_2O$ : NaF : $51.6H_2O$ at $175^{\circ}C$ for 24 h. The ZSM-5 membrane exhibited high pervaporation performance with a flux of $3.92kg/(m^2{\cdot}h)$ and corresponding separation factor of higher than 10,000 for dehydration of 90 wt.% isopropanol/water mixture at $75^{\circ}C$.

Keywords

Acknowledgement

Supported by : Anhui Provincial Natural Science Foundation, Anhui Colleges and Universities

References

  1. Abedi Koupaei, J. (2001), "The effect of Mashhad landfill on pollution of groundwater resources", Proceed. 4th Nat. Conf. Environment. Health, Iran, 1, 87-97.
  2. Algieri, C., Bernardo, P. and Barbieri, G. (2009), "A novel seeding procedure for preparing tubular NaY zeolite membranes", Micropor. Mesopor. Mater., 119(1-3), 129-136. https://doi.org/10.1016/j.micromeso.2008.10.008.
  3. Amirilargani, M. and Sadatnia, B. (2014), "Poly (vinyl alcohol)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of isopropanol", J. Membr. Sci, 469, 1-10. https://doi.org/10.1016/j.memsci.2014.06.034.
  4. Bakker, W.J.W., Kapteijn, F. and Poppe, J. (1996), "Permeation characteristics of a metal-supported silicalite-1 zeolite membrane", J. Membr. Sci., 117(1-2), 57-78. https://doi.org/10.1016/0376-7388(96)00035-X.
  5. Berenguer-Murcia, A., Garcia-Martinez, J. and Cazorla-Amoros, D. (2003), "Silicalite-1 membranes supported on porous carbon discs", Micropor. Mesopor. Mater., 59(2-3), 147-159. https://doi.org/10.1016/S1387-1811(03)00306-8.
  6. Bhat, S.D. and Aminabhavi, T.M. (2006), "Novel sodium alginate composite membranes incorporated with SBA-15 molecular sieves for the pervaporation dehydration of aqueous mixtures of isopropanol and 1, 4-dioxane at $30^{\circ}C$", Micropor. Mesopor. Materials, 91(1-3), 206-214. https://doi.org/10.1016/j.micromeso.2005.11.044.
  7. Caro. J. and Noack, M. (2008) "Zeolite membranes-recent developments and progress", Micropor. Mesopor. Mater., 115(3), 215-233. https://doi.org/10.1016/j.micromeso.2008.03.008.
  8. Cui, Y., Kita, H., Okamoto, K.I. (2004), "Zeolite T membrane: preparation, characterization, pervaporation of water/organic liquid mixtures and acid stability", J. Membr. Sci, 236(1-2), 17-27. https://doi.org/10.1016/j.memsci.2003.12.018.
  9. Chen, H., Li, Y., Yang, W. (2007), "Preparation of silicalite-1 membrane by solution-filling method and its alcohol extraction properties", J. Membr. Sci, 296(1-2), 122-130. https://doi.org/10.1016/j.memsci.2007.03.021.
  10. Chen, H., Yan, Y. and Shao, Y. (2014), "Catalytic activity and stability of porous Co-Cu-Mn mixed oxide modified microfibrous-structured ZSM-5 membrane/PSSF catalyst for VOCs oxidation", RSC Adv, 4(98), 55202-55209. https://doi.org/10.1039/C4RA08769K.
  11. Chen, X., Wang, J., Yin, D., Yang, J., Lu, J., Zhang, Y. and Chen, Z. (2013), "High-performance zeolite T membrane for dehydration of organics by a new varying temperature hot-dip coating method", AIChE J, 59(3), 936-947. https://doi.org/10.1002/aic.13851.
  12. Choi, J., Jeong, H.K. and Snyder, M.A. (2009), "Grain boundary defect elimination in a zeolite membrane by rapid thermal processing", Science, 325(5940), 590-593. https://doi.org/10.1126/science.1176095.
  13. Diban, N., Aguayo, A.T., Bilbao, J., Urtiaga, A. and Ortiz, I. (2013), "Membrane reactors for in situ water removal: a review of applications", Ind. Eng. Chem. Res, 52(31), 10342-10354. https://doi.org/10.1021/ie3029625.
  14. Feng, X. and Huang, R.Y. (1997), "Liquid separation by membrane pervaporation: A review", Ind. Eng. Chem. Res, 36(4), 1048-1066. https://doi.org/10.1021/ie960189g.
  15. Gao, X., Zou, X. and Zhang, F. (2013), "Eco-friendly fabrication of hydrophilic ZSM-5 membranes for alcohol upgrading", Chem. Commun, 49(78), 8839-8841. https://doi.org/10.1039/C3CC44515A.
  16. Hua, D., Ong, Y.K. and Wang, Y. (2014), "ZIF-90/P84 mixed matrix membranes for pervaporation dehydration of isopropanol", J. Membr. Sci, 453, 155-167. https://doi.org/10.1016/j.memsci.2013.10.059.
  17. Kittur, A.A., Kulkarni, S.S. and Aralaguppi, M.I. (2005), "Preparation and characterization of novel pervaporation membranes for the separation of water-isopropanol mixtures using chitosan and NaY zeolite", J. Membr. Sci, 247(1-2), 75-86. https://doi.org/10.1016/j.memsci.2004.09.010.
  18. Korelsykiy, D., Leppajarvi, T., Zhou, H., Grahn, M., Tanskanen, J. and Hedlund, J. (2013), "High flux MFI membranes for pervaporation", J. Membr. Sci, 427,381-389. https://doi.org/10.1016/j.memsci.2012.10.016.
  19. Li G., Kikuchi E. and Matsukata M. (2003), "The control of phase and orientation in zeolite membranes by the secondary growth method", Micropor. Mesopor. Mater, 62(3), 211-220. https://doi.org/10.1016/S1387-1811(03)00407-4.
  20. Li, G., Kikuchi, E. and Matsukata, M. (2003), "Separation of water-acetic acid mixtures by pervaporation using a thin mordenite membrane", Sep. Purif. Technol, 32(1-3), 199-206. https://doi.org/10.1016/S1383-5866(03)00035-2.
  21. Li, L., Yang, J. and Li, J. (2016), "High performance ZSM-5 membranes on coarse macroporous $\alpha$-$Al_2O_3$ supports for dehydration of alcohols", AIChE J, 62(8), 2813-2824. https://doi.org/10.1002/aic.15234.
  22. Li, L., Yang, J. and Li, J. (2016), "Synthesis of high performance mordenite membranes from fluoride-containing dilute solution under microwave-assisted heating", J. Membr. Sci, 512, 83-92. https://doi.org/10.1016/j.memsci.2016.03.056.
  23. Li, L., Zhang, W. and Yang, J. (2015), "Preparation and characterization of water perm-selectivity ZSM-5 zeolite membrane using fluoride route", J. Inorg. Mater, 30(11), 1167-1171. https://doi.org/10.15541/jim20150192
  24. Lin, X., Kikuchi, E. and Matsukata, M. (2000), "Preparation of mordenite membranes on $\alpha$-alumina tubular supports for pervaporation of water-isopropyl alcohol mixtures", Chem. Commun, 0(11),957-958. https://doi.org/10.1039/A909867D.
  25. Lin, Y.S., Kumakiri, I., Nair, B.N. and Alsyouri, H. (2002), "Microporous inorganic membranes", Sep. Purif. Rev, 31(2), 229-379. https://doi.org/10.1081/SPM-120017009.
  26. Lipnizki, F., Field, R.W. and Ten, P.K. (1999), "Pervaporationbased hybrid process: a review of process design, applications and economics", J. Membr. Sci, 153(2), 183-210. https://doi.org/10.1016/S0376-7388(98)00253-1.
  27. Ma, J., Zhang, M. and Lu, L. (2009), "Intensifying esterification reaction between lactic acid and ethanol by pervaporation dehydration using chitosan-TEOS hybrid membranes", Chem. Eng. J, 155(3), 800-809. https://doi.org/10.1016/j.cej.2009.07.044.
  28. Mintova, S., Hedlund, J., Valtchev, V., Schoeman, B.J. and Sterte, J. (1998), "ZSM-5 films prepared from template free precursors", J. Mater. Chem, 8(10), 2217-2221. https://doi.org/10.1039/A803687J.
  29. Morigami, Y., Kondo, M. and Abe, J. (2001), "The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane", Sep. Purif. Technol, 25(1-3), 251-260. https://doi.org/10.1016/S1383-5866(01)00109-5.
  30. Noack M., Kolsch P. and Caro J. (2000), "MFI membranes of different Si/Al ratios for pervaporation and steam permeation", Microporous and Mesoporous Materials, 35, 253-265. https://doi.org/10.1016/S1387-1811(99)00226-7.
  31. Noack, M., Kolsch, P., Seefeld, V., Toussaint, P., Georgi, G. and Caro, J. (2005), "Influence of the Si/Al-ratio on the permeation properties of MFI-membranes", Micropor. Mesopor. Mater, 79, 329-337. https://doi.org/10.1016/j.micromeso.2005.01.004.
  32. Okamoto, K., Kita, H. and Horii, K. (2001), "Zeolite NaA membrane: preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures", Ind. Eng. Chem. Res, 40(1), 163-175. https://doi.org/10.1021/ie0006007.
  33. Premakshi, H.G., Ramesh, K. and Kariduraganavar, M.Y. (2015), "Modification of crosslinked chitosan membrane using NaY zeolite for pervaporation separation of water-isopropanol mixtures", Chem. Eng. Res. Des, 94, 32-43. https://doi.org/10.1016/j.cherd.2014.11.014.
  34. Pulyalina, A., Polotskaya, G. and Goikhman, M. (2013), "Study on polybenzoxazinone membrane in pervaporation processes", J. Appl. Polym. Sci, 130(6), 4024-4031. https://doi.org/10.1002/app.39674.
  35. Qiao, X., Chung, T.S. and Guo, W.F. (2005), "Dehydration of isopropanol and its comparison with dehydration of butanol isomers from thermodynamic and molecular aspects", J. Membr. Sci, 252(1-2), 37-49. https://doi.org/10.1016/j.memsci.2004.11.014.
  36. Rachipudi, P.S., Kariduraganavar, M.Y. and Kittur, A.A. (2011), "Synthesis and characterization of sulfonated-poly (vinyl alcohol) membranes for the pervaporation dehydration of isopropanol", J. Membr. Sci, 383(1-2), 224-234. https://doi.org/10.1016/j.memsci.2011.08.040.
  37. Sato, K., Sugimoto, K. and Nakane, T. (2008), "Mass-production of tubular NaY zeolite membranes for industrial purpose and their application to ethanol dehydration by vapor permeation", J. Membr. Sci, 319(1-2), 244-255. https://doi.org/10.1016/j.memsci.2008.03.041.
  38. Tang Z., Kim S.J. and Gu X. (2009), "Microwave synthesis of MFI-type zeolite membranes by seeded secondary growth without the use of organic structure directing agents", Micropor. Mesopor. Mater, 118(1-3), 224-231. https://doi.org/10.1016/j.micromeso.2008.08.029.
  39. Wang, Z. and Yan, Y. (2001), "Controlling crystal orientation in zeolite MFI thin films by direct in situ crystallization", Chem. Mater, 13(3), 1101-1107. https://doi.org/10.1021/cm000849e.
  40. Xiao, W., Yang, J. and Shen, D. (2010), "Synthesis and property of silicalite-1 membranes by restricting growth method with dilute solution", Micropor. Mesopor. Mater, 129(1-2), 22-29. https://doi.org/10.1016/j.micromeso.2009.08.036.
  41. Xu, X., Yang, W. and Liu, J. (2000), "Synthesis of a highpermeance NaA zeolite membrane by microwave heating", Adv. Mater, 12(3), 195-198. https://doi.org/10.1002/(SICI)1521-4095(200002)12:3<195::AID-ADMA195>3.0.CO;2-E.
  42. Yang, J., Li, L. and Li, W. (2014), "Tuning aluminum spatial distribution in ZSM-5 membranes: a new strategy to fabricate high performance and stable zeolite membranes for dehydration of acetic acid", Chem. Commun, 50(93), 14654-14657. https://doi.org/10.1039/C4CC04747H.
  43. Zhang, Q.G., Liu, Q.L., Chen, Y. (2007), "Dehydration of isopropanol by novel poly (vinyl alcohol)-silicone hybrid membranes", Ind. Eng. Chem. Res, 46(3), 913-920. https://doi.org/10.1021/ie0609719.
  44. Zhu, M.H., Lu, Z.H., Kumakiri, I. (2012), "Preparation and characterization of highwater perm-selectivity ZSM-5 membrane without organic template", J. Membr. Sci, 415, 57-65. https://doi.org/10.1016/j.memsci.2012.04.037.
  45. Zuo, J., Wang, Y., Chung, T.S. (2013), "Novel organic-inorganic thin film composite membranes with separation performance surpassing ceramic membranes for isopropanol dehydration", J. Membr. Sci, 433, 60-71. https://doi.org/10.1016/j.memsci.2013.01.002.