DOI QR코드

DOI QR Code

Membrane fouling and sludge characteristics in submerged membrane bioreactor under low temperature

  • Yuan, Yuan (College of Bioengineering, Beijing Polytechnic) ;
  • Zhang, Jianqiao (Environmental Protection and Water Affairs Bureau, Luohu District)
  • Received : 2018.05.17
  • Accepted : 2019.04.10
  • Published : 2019.09.25

Abstract

This study aimed to investigate the membrane fouling and sludge characteristics in a pilot-scale submerged membrane bioreactor (MBR) operated under low temperature ($7^{\circ}C$). To elucidate the mechanisms of membrane fouling at low temperature, we studied the correlation between MBR performances and physicochemical properties of sludge including extracellular polymeric substance (EPS), relative hydrophobicity (RH) and floc size during long-term operation. The MBR was shown able to remove chemical oxygen demand (COD) stably and efficiently (>90 %) in the case of overgrowth of filamentous bacteria (bulking sludge) at low temperature. On the other hand, the occurrence of filamentous bulking greatly accelerated membrane fouling, as indicated by membrane filtration period of 14 days for filamentous bulking at $7^{\circ}C$, in comparison with that of 27 days for non-bulking sludge at $24^{\circ}C$ The overgrowth of filamentous bacteria resulting from low-temperature condition led to an increased release of EPS, higher RH, smaller floc size and lower fractal dimension of sludge. These factors accelerated the formation of compact cake layer on membrane surface in association with performance diminution in terms of increase in transmembrane pressure (TMP) of the membrane and thus the decrease in membrane permeability.

Keywords

Acknowledgement

Supported by : Beijing PolyTechnic

References

  1. Allison, D.G. and Sutherland, I.W. (1987), "The role of exopolysaccharides in adhesion of freshwater bacteria", Microbiol, 133, 1319-1327. https://doi.org/10.1099/00221287-133-5-1319.
  2. Brink, P.D., Satpradit, O.A., Bentem, A., Zwijnenburg, A., Temmink, H. and Loosdrecht, M. (2011), "Effect of temperature shocks on membrane fouling in membrane bioreactors", Water Res., 45, 4491-4500. https://doi.org/10.1016/j.watres.2011.05.046.
  3. Cai, X., Shen, L.G., Zhang, M.J., Chen, J.R., Hong, H.C. and Lin, H.J. (2017), "Membrane fouling in a submerged membrane bioreactor: An unified approach to construct topography and to evaluate interaction energy between two randomly rough surfaces", Bioresour. Technol., 243, 1121-1132. https://doi.org/10.1016/j.biortech.2017.07.054.
  4. Chen, J. R., Zhang, M.J., Li, F.Q., Qian, L., Lin, H.J., Yang, L.N., Wu, X.L., Zhou, X.L., He, Y.M. and Liao, B.Q. (2016), "Membrane fouling in a membrane bioreactor: High filtration resistance of gel layer and its underlying mechanism", Water Res, 102, 82-89. https://doi.org/10.1016/j.watres.2016.06.028.
  5. Chen, J.R., Lin, H.J., Shen, L.G., He, Y.M., Zhang, M.J. and Liao, B.Q. (2017), "Realization of quantifying interfacial interactions between a randomly rough membrane surface and a foulant particle", Bioresour. Technol., 226, 220-228. https://doi.org/10.1016/j.biortech.2016.12.025.
  6. Choi, J.G., Bae, T.H., Kim, J.H., Tak, T.M. and Randall, A.A. (2002), "The behavior of membrane fouling initiation on the crossflow membrane bioreactor system", J. Membr. Sci., 203, 103-113. https://doi.org/10.1016/S0376-7388(01)00790-6.
  7. Chu, P.H. and Li, X.Y. (2005), "Membrane fouling in a membrane bioreactor (MBR): Sludge cake formation and fouling characteristics", Biotechnol. Bioeng., 90(3), 323. https://doi.org/10.1002/bit.20409.
  8. Emanuelsson, E.A.C., Arcangeli, J.P. and Livingston, A.G. (2003), "The anoxic extractive membrane bioreactor", Water Res., 37(6), 1231. https://doi.org/10.1016/S0043-1354(02)00487-6.
  9. Gasmi, A., Heran, M., Hannachi, A. and Grasmick, A. (2015), "Fouling analysis and biomass distribution on a membrane bioreactor under low ratio COD/N", Membr. Water Treat., 6, 263-276. https://doi.org/10.12989/mwt.2015.6.4.263.
  10. Iorhemen, O.T., Hamza, R.A. and Tay, J.W. (2017), "Utilization of aerobic granulation to mitigate membrane fouling in MBRs", Membr. Water Treat., 8, 395-409. https://doi.org/10.12989/mwt.2017.8.5.395.
  11. Jegatheesan, V., Pramanik, B.K., Chen, J.Y., Navaratna, D., Chang, C.Y. and Shu, L. (2016), "Treatment of textile wastewater with membrane bioreactor: A critical review", Bioresour. Technol., 204, 202-212. https://doi.org/10.1016/j.biortech.2016.01.006.
  12. Jenkins, D., Richard, M.G. and Daigger, G.T. (1986), "Manual on the causes and control of activated sludge bulking and foaming", Ridegeline Press, Lafayette, CA, USA.
  13. Jeong, S.H., Cho, K.J., Bae, H.W., Keshvardoust, P., Rice, S.A., Vigneswaran, S., Lee, S.H. and Leiknes, T. (2016), "Effect of microbial community structure on organic removal and biofouling in membrane adsorption bioreactor used in seawater pretreatment", Chem. Eng. J., 294, 30-39. https://doi.org/10.1016/j.cej.2016.02.108.
  14. Jin, B., Wilen, B.M. and Lant, P. (2003), "A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge", Chem. Eng. J., 95, 221-234. https://doi.org/10.1016/S1385-8947(03)00108-6.
  15. Lin, H.J., Zhang, M.J., Wang, F.Y., Meng, F.G., Liao, B.Q., Hong, H.C., Chen, J.R., Gao, W.J. (2014), "A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: Characteristics, role in membrane fouling and control strategies", J. Membr. Sci. 460, 110-125. https://doi.org/10.1016/j.memsci.2014.02.034.
  16. Liu, H. and Fang, H.H. (2002), "Extraction of extracellular polymeric substances (EPS) of sludges", J. Biotechnol., 95, 249. https://doi.org/10.1016/S0168-1656(02)00025-1.
  17. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951), "Protein measurement with the Folin phenol reagent", J. Biol. Chem., 193, 265. https://doi.org/10.1016/S0021-9258(19)52451-6
  18. Meng, F.G., Zhang, H.M., Yang, F.L., Li, Y.S., Xiao, J.N. and Zhang, X.W. (2006), "Effect of filamentous bacteria on membrane fouling in submerged membrane bioreactor", J. Membr. Sci., 272, 161-168. https://doi.org/10.1016/j.memsci.2005.07.041.
  19. Motta, M.D., Pons, M.N., Roche, N. and Vivier, H. (2001), "Characterisation of activated sludge by automated image analysis", Biochem. Eng. J., 9, 165-173. https://doi.org/10.1016/S1369-703X(01)00138-3.
  20. Nagaoka, H., Yamanishi, S. and Miya, A. (1998), "Modeling of biofouling extracellular polymers in a membrane parathion activated sludge system", Water Sci. Technol., 38, 497-504. https://doi.org/10.2166/wst.1998.0705
  21. Neoh, C.H., Noor, Z.Z., Mutamim, N.S.A. and Lim, C.K. (2016), "Green technology in wastewater treatment technologies: Integration of membrane bioreactor with various wastewater treatment systems", Chem. Eng. J., 283, 582-594. https://doi.org/10.1016/j.cej.2015.07.060
  22. Palmarin, M.J. and Young, S. (2016), "Influence of mixed liquor suspended solids on the removal efficiency of a hybrid membrane bioreactor", Membr. Water Treat., 7(1), 11-22. https://doi.org/10.12989/mwt.2016.7.1.011.
  23. Ramesh, A., Lee, D.J. and Lai, J.Y. (2007), "Membrane biofouling by extracellular polymeric substances or soluble microbial products from membrane bioreactor sludge", Appl. Microbial Biotechnol., 74(3), 699-707. https://doi.org/10.1007/s00253-006-0706-x.
  24. Seminario, L., Rozas, R., Borquez, R. and Toledo, P.G. (2002), "Pore blocking and permeability reduction in cross-flow microfiltration", J. Membr. Sci., 209, 121-142. https://doi.org/10.1016/S0376-7388(02)00285-5.
  25. Shen, L.G., Lei, Q., Chen, J.R., Hong, H.C., He, Y.M. and Lin, H.J. (2015), "Membrane fouling in a submerged membrane bioreactor: Impacts of floc size", Chem. Eng. J., 269, 328-334. https://doi.org/10.1016/j.cej.2015.02.002.
  26. Sombatsompop, K., Visvanathan, C. and Ben Aim, R. (2006), "Evaluation of biofouling phenomenon in suspended and attached growth membrane bioreactor systems", Desalination, 201(1-3), 138-149. https://doi.org/10.1016/j.desal.2006.02.011.
  27. Teng, J.H., Shen, L.G., Yu, G.Y., Wang, F.Y., Li, F.Q., Zhou, X.L., He, Y.M. and Linn, H.J. (2018) "Mechanism analyses of high specific filtration resistance of gel and roles of gel elasticity related with membrane fouling in a membrane bioreactor", Bioresour. Technol., 257, 39-46. https://doi.org/10.1016/j.biortech.2018.02.067.
  28. Walter, W.G. (1998), APHA Standard Methods for the Examination of Water and Wastewater, Health Laboratory Science, Washington DC, USA.
  29. Wang, P., Yu, Z.S., Qi, R. and Zhang, H.X. (2016), "Detailed comparison of bacterial communities during seasonal sludge bulking in a municipal wastewater treatment plant", Water Res., 105, 157-166. https://doi.org/10.1016/j.watres.2016.08.050.
  30. Wilen, B.M., Jin, B. and Lant, P. (2003), "The influence of key chemical constituents in activated sludge on surface and flocculating properties", Water Res., 37(9), 2127-2139. https://doi.org/10.1016/S0043-1354(02)00629-2.
  31. Zhang, C.Q., Wang, G.Z. and Hu, Z.Q. (2014), "Changes in wastewater treatment performance and activated sludge properties of a membrane bioreactor at low temperature operation", Environ. Sci- Prog. Impacts, 16, 2199-2207. https://doi.org/10.1039/C4EM00174E.
  32. Zhang, H.F., Wang, B., Yu, H.H., Zhang, L.H. and Song, L.F. (2015), "Relation between sludge properties and filterability in MBR: Under infinite SRT", Membr. Water Treat., 6(6), 501-512. https://doi.org/10.12989/mwt.2015.6.6.501.
  33. Zhang, J., Chua, H.C., Zhou, J. and Fane, A.G. (2006), "Factors affecting the membrane performance in submerged membrane bioreactors", J. Membr. Sci., 284(1-2), 54-66. https://doi.org/10.1016/j.memsci.2006.06.022.
  34. Zhang, M.J., Hong, H.C., Lin, H.J., Shen, L.G., Yu, H.Y., Ma, G.C., Chen, J.R. and Liao, B.Q. (2018), "Mechanistic insights into alginate fouling caused by calcium ions based on terahertz time-domain spectra analyses and DFT calculations", Water Res., 129, 337-346. https://doi.org/10.1016/j.watres.2017.11.034.
  35. Zhang, M.J., Lin, H.J., Shen, L.G., Liao, B.Q., Wu, X.L. and Li, R.J. (2017), "Effect of calcium ions on fouling properties of alginate solution and its mechanisms", J. Membr. Sci., 525, 320-329. https://doi.org/10.1016/j.memsci.2016.12.006.
  36. Zhang, W.X., Tang, B. and Bin, L.Y. (2017), "Research Progress in Biofilm-Membrane Bioreactor: A Critical Review", Ind. Eng. Chem. Res., 56, 6900-6909. https://doi.org/10.1021/acs.iecr.7b00794.