DOI QR코드

DOI QR Code

Characterizing nonlinear oscillation behavior of an MRF variable rotational stiffness device

  • Yu, Yang (Centre for Built Infrastructure Research, School of Civil and Environmental Engineering, University of Technology Sydney) ;
  • Li, Yancheng (Centre for Built Infrastructure Research, School of Civil and Environmental Engineering, University of Technology Sydney) ;
  • Li, Jianchun (Centre for Built Infrastructure Research, School of Civil and Environmental Engineering, University of Technology Sydney) ;
  • Gu, Xiaoyu (Centre for Built Infrastructure Research, School of Civil and Environmental Engineering, University of Technology Sydney)
  • 투고 : 2018.09.21
  • 심사 : 2019.08.10
  • 발행 : 2019.09.25

초록

Magneto-rheological fluid (MRF) rotatory dampers are normally used for controlling the constant rotation of machines and engines. In this research, such a device is proposed to act as variable stiffness device to alleviate the rotational oscillation existing in the many engineering applications, such as motor. Under such thought, the main purpose of this work is to characterize the nonlinear torque-angular displacement/angular velocity responses of an MRF based variable stiffness device in oscillatory motion. A rotational hysteresis model, consisting of a rotatory spring, a rotatory viscous damping element and an error function-based hysteresis element, is proposed, which is capable of describing the unique dynamical characteristics of this smart device. To estimate the optimal model parameters, a modified whale optimization algorithm (MWOA) is employed on the captured experimental data of torque, angular displacement and angular velocity under various excitation conditions. In MWOA, a nonlinear algorithm parameter updating mechanism is adopted to replace the traditional linear one, enhancing the global search ability initially and the local search ability at the later stage of the algorithm evolution. Additionally, the immune operation is introduced in the whale individual selection, improving the identification accuracy of solution. Finally, the dynamic testing results are used to validate the performance of the proposed model and the effectiveness of the proposed optimization algorithm.

키워드

과제정보

연구 과제 주관 기관 : Australian Research Council

참고문헌

  1. Braz-Cesar, M.T. and Barros, R.C. (2018), "Semi-Active fuzzy based control system for vibration reduction of a SDOF structure under seismic excitation", Smart Struct. Syst., 21(4), 389-395. https://doi.org/10.12989/sss.2018.21.4.389.
  2. Chen, Z.H., Ni, Y.Q. and Or, S.W. (2015), "Characterization and modeling of a self-sensing MR damper under harmonic loading", Smart Struct. Syst., 15(4), 1103-1120. https://doi.org/10.12989/sss.2015.15.4.1103.
  3. Christie, M.D., Sun, S., Deng, L., Ning, D.H., Du, H., Zhang, S.W. and Li, W.H. (2019), "A variable resonance magnetorheological-fluid-based pendulum tuned mass damper for seismic vibration suppression", Mech. Syst. Signal Pr., 116, 530-544. https://doi.org/10.1016/j.ymssp.2018.07.007.
  4. Dyke, S.J., Spencer, Jr., B.F., Sain, M.K. and Carlson, J.D. (1996), "Modeling and control of magnetorheological dampers for seismic response reduction", Smart Mater. Struct., 5(5), 565-575. https://doi.org/10.1088/0964-1726/5/5/006
  5. Dyke, S.J., Spencer, Jr., B.F., Sain, M.K. and Carlson, J.D. (1998), "An experimental study of MR dampers for seismic protection", Smart Mater. Struct., 7(5), 693-703. https://doi.org/10.1088/0964-1726/7/5/012
  6. Ehrgott, R.C. and Masri, S.F. (1992), "Modelling of oscillatory dynamic behavior of electrorheologkal materials in shear", Smart Mater. Struct., 1(4), 275-285. https://doi.org/10.1088/0964-1726/1/4/002
  7. Fesharaki, J.J. and Golabi, S. (2016), "A novel method to specify pattern recognition of actuators for stress reduction based on particle swarm optimization method", Smart Struct. Syst., 17(5), 725-742. https://doi.org/10.12989/sss.2016.17.5.725.
  8. Gong, X., Guo, C., Xuan, S., Liu, T. and Peng, C. (2012), "Oscillatory normal forces of magnetorheological fluids", Soft Matter., 8(19), 5256-5261. https://doi.org/10.1039/c2sm25341k
  9. Hong, S.R., Choi, S.B., Choi, Y.T. and Wereley, N.M. (2005), "Non-dimensional analysis and design of a magnetorheological damper", J. Sound Vib., 288(4-5), 847-863. https://doi.org/10.1016/j.jsv.2005.01.049.
  10. Hu, W. and Wereley, N.M. (2008), "Hybrid magnetorheological fluid-elastomer lag dampers for helicopter stability augmentation", Smart Mater. Struct., 17(4), 045021. https://doi.org/10.1088/0964-1726/17/4/045021
  11. Huang, J., Zhang, J.Q., Yang, Y. and Wei, Y.Q. (2002), "Analysis and design of a cylindrical magneto-rheological fluid brake", J. Mater. Process. Tech., 129(1-3), 559-562. https://doi.org/10.1016/S0924-0136(02)00634-9.
  12. Imaduddin, F., Mazlan, S.A. and Zamzuri, H. (2013), "A design and modelling review of rotary magnetorheological damper", Mater. Design, 51, 575-591. https://doi.org/10.1016/j.matdes.2013.04.042
  13. Jimenez, R. and A lvarez-Icaza, L. (2005), "LuGre friction model for a magnetorheological damper", Struct. Control Health. 12(1), 91-116. https://doi.org/10.1002/stc.58.
  14. Kaveh, A. and Ghazaan, M.I. (2017), "Enhanced whale optimization algorithm for sizing optimization of skeletal structures", Mech. Based Des. Struct., 45(3), 345-362. https://doi.org/10.1080/15397734.2016.1213639.
  15. Li Voti, R. (2018), "Optimization of a perfect absorber multilayer structure by genetic algorithms", J. Eur. Opt. Soc.-Rapid., 14(1), 11. https://doi.org/10.1186/s41476-018-0079-7
  16. Li, W.H. and Du, H. (2003), "Design and experimental evaluation of a magnetorheological brake", Int. J. Adv. Manuf. Tech., 21(7), 508-515. https://doi.org/10.1007/s001700300060.
  17. Li, W.H., Du, H., Chen, G., Yeo, S.H. and Guo, N. (2003), "Nonlinear viscoelastic properties of MR fluids under largeamplitude-oscillatory-shear", Rheol. Acta. 42(3), 280-286. https://doi.org/10.1007/s00397-002-0285-4.
  18. Li, Y. and Li, J. (2014), "Dynamic characteristics of a magnetorheological pin joint for civil structures", Front. Mech. Eng., 9(1), 15-33. https://doi.org/10.1007/s11465-014-0283-0.
  19. Li, Z., Chang, C.C. and Spencer Jr., B.F. (2002), "Intelligent technology-based control of motion and vibration using MR dampers", Earthq. Eng. Eng. Vib., 1(1), 100-110. https://doi.org/10.1007/s11803-002-0013-1.
  20. Mirjalili, S. and Lewis, A. (2016), "The whale optimization algorithm", Adv. Eng. Softw., 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008.
  21. Muthalif, A.G.A., Kasemi, H.B., Nordin, N.H.D., Rashid, M.M. and Razali, M.K.M. (2017), "Semi-active vibration control using experimental model of magnetorheological damper with adaptive F-PID controller", Smart Struct. Syst., 20(1), 85-97. https://doi.org/10.12989/sss.2017.20.1.085.
  22. Nam, T.H. and Ahn, K.K. (2009), "New approach to designing an MR brake using a small steel roller and MR fluid", J. Mech. Sci. Technol., 23(7), 1911-1923. https://doi.org/10.1007/s12206-009-0301-z.
  23. Nam, Y.J., Moon, Y.J. and Park, M.K. (2007), "Performance improvement of a rotary MR fluid actuator based on electromagnetic design", J. Intel. Mat. Syst. Str., 19(6), 695-705. https://doi.org/10.1177/1045389X07079463.
  24. Nguyen, P.B. and Choi, S.B. (2011), "A new approach to magnetic circuit analysis and its application to the optimal design of a bidirectional magnetorheological brake", Smart Mater. Struct., 20(12), 125003. https://doi.org/10.1088/0964-1726/20/12/125003
  25. Nguyen, Q.H. and Choi, S.B. (2010), "Optimal design of an automotive magnetorheological brake considering geometric dimensions and zero-field friction heat", Smart Mater. Struct., 19(11), 115024. https://doi.org/10.1088/0964-1726/19/11/115024
  26. Park, E.J., Stoikov, D., Falcao da Luz, L. and Suleman, A. (2006), "A performance evaluation of an automotive magnetorheological brake design with a sliding mode controller", Mechatronics, 16(7), 405-416. https://doi.org/10.1016/j.mechatronics.2006.03.004.
  27. Royel, S., Yu, Y., Li, Y., Li, J. and Ha, Q. (2015), "A hysteresis model and parameter identification for MR pin joints using immune particle swarm optimization", Proceedings of the 11th International Conference on Automation Science and Engineering, Gothenburg, Sweden, August.
  28. Sohn, J.W., Oh, J.S. and Choi, S.B. (2015), "Design and novel type of a magnetorheological damper featuring piston bypass hole", Smart Mater. Struct., 24(3), 035013. https://doi.org/10.1088/0964-1726/24/3/035013
  29. Song, B.K., Nguyen, Q.H., Choi, S.B. and Woo, J.K. (2013), "The impact of bobbin material and design on magnetorheological brake performance", Smart Mater. Struct., 22(10), 105030. https://doi.org/10.1088/0964-1726/22/10/105030
  30. Spencer, Jr, B.F., Dyke, S.J., Sain, M.K. and Carlson, J.D. (1997), "Phenomenological model for magnetorheological dampers", J. Eng. Mech., 123(3), 230-238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230).
  31. Sun, S., Yang, J., Li, W., Deng, H., Du, H. and Alici, G. (2015), "Development of a novel variable stiffness and damping magnetorheological fluid damper", Smart Mater. Struct., 24(8), 085021. https://doi.org/10.1088/0964-1726/24/8/085021
  32. Sun, W.Z., Wang, J.S. and Wei, X. (2018), "An improved whale optimization algorithm based on different searching paths and perceptual disturbance", Symmetry, 10(6), 210. https://doi.org/10.3390/sym10060210.
  33. Truong, D.Q. and Ahn, K.K. (2010), "Identification and application of black-box model for a self-sensing damping system using a magneto-rheological fluid damper", Sensor Actuat. A-Phys., 161(1-2), 305-321. https://doi.org/10.1016/j.sna.2010.04.031.
  34. Tse, T. and Chang, C.C. (2004), "Shear-mode rotary magnetorheological damper for small scale structural control experiments", J. Struct. Eng., 130(6), 904-911. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:6(904).
  35. Wang, D.H. and Liao, W.H. (2011), "Magnetorheological fluid dampers: a review of parametric modeling", Smart Mater. Struct., 20(2), 023001. https://doi.org/10.1088/0964-1726/20/2/023001
  36. Wang, X. and Gordaninejad, F. (1999), "Flow analysis of fieldcontrollable, electro-and magneto-rheological fluids using Herschel-Bulkley model", J. Intel. Mat. Syst. Str., 10(8), 601-608. https://doi.org/10.1106/P4FL-L1EL-YFLJ-BTRE.
  37. Wereley, N.M., Kamath, G.M. and Madhavan, V. (1999), "Hysteresis modeling of semi-active magnetorheological helicopter dampers", J. Intel. Mat. Syst. Str., 10(8), 624-633. https://doi.org/10.1106/NHLE-FNDL-U243-L8U0.
  38. Yang, G., Spencer Jr., B.F., Carlson, J.D. and Sain, M.K. (2002), "Large-scale MR fluid dampers: Modeling and dynamic performance considerations", Eng. Struct., 24(3), 309-323. https://doi.org/10.1016/S0141-0296(01)00097-9.
  39. Yang, G., Spencer, Jr., B.F., Jung, H.J. and Carlson, J.D. (2004), "Dynamic modeling of large-scale magnetorheological damper systems for civil engineering applications", J. Eng. Mech., 130(9), 1107-1114. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:9(1107).
  40. Yi, T.H., Li, H.N. and Zhang, X.D. (2015), "Health monitoring sensor placement optimization for Canton Tower using virus monkey algorithm", Smart Struct. Syst., 15(5), 1373-1392. http://dx.doi.org/10.12989/sss.2015.15.5.1373.
  41. Yu, M., Wang, S., Fu, J. and Peng, Y. (2013), "Unsteady analysis for oscillatory flow of magnetorheological fluid dampers based on Bingham plastic and Herschel-Bulkley models", J. Intel. Mat. Syst. Str., 24(9), 1067-1078. https://doi.org/10.1177/1045389X13476151.
  42. Zhou, Q., Nielsen, S.R.K. and Qu, W.L. (2006), "Semi-active control of three-dimensional vibrations of an inclined sag cable with magnetorheological dampers", J. Sound Vib., 296(1-2), 1-22. https://doi.org/10.1016/j.jsv.2005.10.028.
  43. Zhou, Z., Meng, S.-P., Wu, J. and Zhao, Y. (2012), "Semi-active control on long-span reticulated steel structures using MR dampers under multi-dimensional earthquake excitations", Smart Struct. Syst., 10(6), 557-572. https://doi.org/10.12989/sss.2012.10.6.557.
  44. Zhu, X., Jing, X., Cheng, L. (2012), "Magnetorheological fluid dampers: A review on structure design and analysis", J. Intel. Mat. Syst. Str., 23(8), 839-873. https://doi.org/10.1177/1045389X12436735.

피인용 문헌

  1. Optimal Control of Semiactive Two-Stage Vibration Isolation Systems for Marine Engines vol.2021, 2019, https://doi.org/10.1155/2021/5334670