DOI QR코드

DOI QR Code

Leveraging artificial intelligence to assess explosive spalling in fire-exposed RC columns

  • Seitllari, A. (Department of Civil and Environmental Engineering, Michigan State University) ;
  • Naser, M.Z. (Glenn Department of Civil Engineering, Clemson University)
  • Received : 2019.02.26
  • Accepted : 2019.08.06
  • Published : 2019.09.25

Abstract

Concrete undergoes a series of thermo-based physio-chemical changes once exposed to elevated temperatures. Such changes adversely alter the composition of concrete and oftentimes lead to fire-induced explosive spalling. Spalling is a multidimensional, complex and most of all sophisticated phenomenon with the potential to cause significant damage to fire-exposed concrete structures. Despite past and recent research efforts, we continue to be short of a systematic methodology that is able of accurately assessing the tendency of concrete to spall under fire conditions. In order to bridge this knowledge gap, this study explores integrating novel artificial intelligence (AI) techniques; namely, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA), together with traditional statistical analysis (multilinear regression (MLR)), to arrive at state-of-the-art procedures to predict occurrence of fire-induced spalling. Through a comprehensive datadriven examination of actual fire tests, this study demonstrates that AI techniques provide attractive tools capable of predicting fire-induced spalling phenomenon with high precision.

Keywords

References

  1. Ashteyat, A.M. and Ismeik, M. (2018), "Predicting residual compressive strength of self-compacted concrete under various temperatures and relative humidity conditions by artificial neural networks", Comput. Concrete, 21(1), 47. https://doi.org/10.12989/CAC.2018.21.1.047.
  2. Asteris, P.G. and Kolovos, K.G. (2017), "Self-compacting concrete strength prediction using surrogate models", Neur. Comput. Appl., 31(1), 1-16. https://doi.org/10.1007/s00521-017-3007-7.
  3. Bazant, Z.P. and Thonguthai, W. (1979), "Pore pressure in heated concrete walls: theoretical prediction", Mag. Concrete Res., 31(107), 67-76. https://doi.org/10.1680/macr.1979.31.107.67.
  4. Bilgehan, M. and Kurtoglu, A.E. (2016), "ANFIS-based prediction of moment capacity of reinforced concrete slabs exposed to fire", Neur. Comput. Appl., 27(4), 869-881. https://doi.org/10.1007/s00521-015-1902-3.
  5. Bostrom, L., McNamee, R., Albrektsson, J. and Johansson, P. (2018), "Screening test methods for determination of fire spalling of concrete", RISE Report.
  6. Boussabaine, A.H. (1996), "The use of artificial neural networks in construction management: a review", Constr. Manage. Econom., 14(5), 427-436. https://doi.org/10.1080/014461996373296.
  7. Bro, R. and Smilde, A. (2014), "Principal component analysis", Anal. Meth., 6(9), 2812. https://doi.org/10.1039/c3ay41907j.
  8. BSI, and European Committee for Standardization (2004), Design of Concrete Structures-Part 1-2: General Rules-Structural Fire Design, Eurocode2 $\S$. https://doi.org/10.1002/jcp.25002.
  9. Buch, S.H. and Sharma, U.K. (2019), "Fire resistance of eccentrically loaded reinforced concrete columns", Fire Technol., 1-36. https://doi.org/10.1007/s10694-019-00823-x
  10. CEN (2002), Eurocode 1: Actions on Structures-Part 1-2: General Actions-Actions on Structures Exposed to Fire.
  11. Chapra, S.C. and Raymond, C.P. (2010), Numerical Methods for Engineers, 6th Edition, McGraw-Hill, New York.
  12. Cobaner, M. (2011), "Evapotranspiration estimation by two different neuro-fuzzy inference systems", J. Hydrol., 398(3-4), 292-302. https://doi.org/10.1016/J.JHYDROL.2010.12.030.
  13. Cobaner, M., Unal, B. and Kisi, O. (2009), "Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydro-meteorological data", J. Hydrol., 367(1-2), 52-61. https://doi.org/10.1016/J.JHYDROL.2008.12.024.
  14. Daldaban, F., Ustkoyuncu, N. and Guney, K. (2006), "Phase inductance estimation for switched reluctance motor using adaptive neuro-fuzzy inference system", Energy Convers. Manage., 47(5), 485-493. https://doi.org/10.1016/j.enconman.2005.05.020
  15. Dwaikat, M.B. and Kodur, V.K.R. (2009), "Hydrothermal model for predicting fire-induced spalling in concrete structural systems", Fire Saf. J., 44(3), 425-434. https://doi.org/10.1016/J.FIRESAF.2008.09.001.
  16. Erdem, H. (2017), "Predicting residual moment capacity of thermally insulated RC beams exposed to fire using artificial neural networks", Comput. Concrete, 19(6), 711. https://doi.org/10.12989/CAC.2017.19.6.711.
  17. Eredm, R.T., Kantar, E., Gucuyen, E. and Anil, O. (2013), "Estimation of compression strength of polypropylene fibre reinforced concrete using artificial neural networks", Comput. Concrete, 12(5), 613-625. https://doi.org/10.12989/cac.2013.12.5.613.
  18. Hass, R. (1986), "Practical rules for the design of reinforced concrete and composite columns submitted to fire", Technical Report, Vol. 69, T.U. Braunschweig.(in German)
  19. Hodhod, O.A., Said, T.E. and Ataya, A.M. (2018), "Prediction of creep in concrete using genetic programming hybridized with ANN", Comput. Concrete, 21(5), 513. https://doi.org/10.12989/CAC.2018.21.5.513.
  20. Ibrahimbegovic, A., Boulkertous, A., Davenne, L., Muhasilovic, M. and Pokrklic, A. (2010), "On modeling of fire resistance tests on concrete and reinforced-concrete structures", Comput. Concrete, 7(4), 285-301. https://doi.org/10.12989/cac.2010.7.4.285.
  21. Jang, J.S.R., Sun, C.T. and Mizutani, E. (1997), "Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence", Automatic Control, IEEE. https://doi.org/10.1109/TAC.1997.633847.
  22. Kalifa, P., Chene, G. and Galle, C. (2001), "High-temperature behaviour of HPC with polypropylene fibres-From spalling to microstructure", Cement Concrete Res., 31(10), 1487-1499. https://doi.org/10.1016/S0008-8846(01)00596-8.
  23. Khoury, G.A. (2000), "Effect of fire on concrete and concrete structures", Pr. Struct. Eng. Mater., 2(4), 429-447. https://doi.org/10.1002/pse.51.
  24. Kisi, O. and Cobaner, M. (2009), "Modeling river stage-discharge relationships using different neural network computing techniques", CLEAN-Soil, Air, Water, 37(2), 160-169. https://doi.org/10.1002/clen.200800010.
  25. Klingsch, E.W.H. (2014), "Explosive spalling of concrete in fire", PhD Thesis, ETH Zurich, Zurich.
  26. Kodur, V. and McGrath, R. (2003), "Fire endurance of highstrength concrete columns", Fire Technol., 39(1), 73-87. https://doi.org/10.1023/A:1021731327822.
  27. Kodur, V.K.R. (2018), "Innovative strategies for enhancing fire performance of high-strength concrete structures", Adv. Struct. Eng., 21(11), 1723-1732. https://doi.org/10.1177/1369433218754335.
  28. Kodur, V.K.R., Cheng, F., Wang, T., Latour, J. and Leroux, P. (2001), "Fire resistance of high-performance concrete columns", IRC-IR-834, National Research Council Canada.
  29. Kodur, V.K.R., McGrath, R., Leroux, P. and Latour, J. (2005), "Experimental studies for evaluating the fire endurance of high-strength concrete columns", Internal Report 81, National Research Council Canada.
  30. Kodur, V.K.R., McGrath, R., Leroux, P., Latour, J. and MacLaurin, J. (2000), "Experimental studies on the fire endurance of highstrength concrete columns", National Research Council Canada.
  31. Koza, J.R. (1992), "A genetic approach to finding a controller to back up a tractor-trailer truck", Proceedings of the 1992 American Control Conference, 2307-2311. https://doi.org/https://doi.org/10.23919/ACC.1992.4792548.
  32. Lee, E.W.M., Yuen, R.K.K., Lo, S.M., Lam, K.C. and Yeoh, G.H. (2004), "A novel artificial neural network fire model for prediction of thermal interface location in single compartment fire", Fire Saf. J., 39(1), 67-87. https://doi.org/10.1016/S0379-7112(03)00092-4.
  33. Lie, T. and Woollerton, J. (1988), Fire Resistance of Reinforced Concrete Columns, NRC Publications Archive, National Research Council Canada.
  34. Lingam, A. and Karthikeyan, J. (2014), "Prediction of compressive strength for HPC mixes containing different blends using ANN", Comput. Concrete, 13(5), 621-632. https://doi.org/10.12989/cac.2014.13.5.621.
  35. Liu, J.C., Tan, K.H. and Yao, Y. (2018), "A new perspective on nature of fire-induced spalling in concrete", Constr. Build. Mater., 184(1), 581-590. https://doi.org/10.1016/j.conbuildmat.2018.06.204.
  36. Mansouri, I. and Kisi, O. (2015), "Prediction of debonding strength for masonry elements retrofitted with FRP composites using neuro fuzzy and neural network approaches", Compos. Part B: Eng., 70, 247-255. https://doi.org/10.1016/J.COMPOSITESB.2014.11.023.
  37. Mansouri, I., Gholampour, A., Kisi, O. and Ozbakkaloglu, T. (2018), "Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques", Neur. Comput. Appl., 29(3), 873-888. https://doi.org/10.1007/s00521-016-2492-4.
  38. Meacham, B., Engelhardt, M. and Kodur, V. (2009), "Collection of data on fire and collapse, faculty of architecture building", NSF Engineering Research and Innovation Conference, Honolulu, Hawaii. http://efectis.com/nl_en/index.htm.
  39. Myllymaki, J. and Lie, T. (1991), Fire Resistance Test of a Square Reinforced Concrete Column, National Research Council Canada.
  40. Naji, S., Shamshirband, S., Basser, H., Alengaram, U.J., Jumaat, M.Z. and Amirmojahedi, M. (2016), "Soft computing methodologies for estimation of energy consumption in buildings with different envelope parameters", Energy Efficiency, 9(2), 435-453. https://doi.org/10.1007/s12053-015-9373-z.
  41. Naser, M., Abu-Lebdeh, G. and Hawileh, R. (2012), "Analysis of RC T-beams strengthened with CFRP plates under fire loading using ANN", Constr. Build. Mater., 37, 301-309. https://doi.org/10.1016/j.conbuildmat.2012.07.001.
  42. Naser, M.Z. (2011), "Behavior of RC beams strengthened with CFRP laminates under fire-A finite element simulation", American University of Sharjah. https://dspace.aus.edu/xmlui/handle/11073/2729.
  43. Naser, M.Z. (2018), "Deriving temperature-dependent material models for structural steel through artificial intelligence", Constr. Build. Mater., 191, 56-68. https://doi.org/10.1016/J.CONBUILDMAT.2018.09.186.
  44. Naser, M.Z. (2019), "Heuristic machine cognition to predict fireinduced spalling and fire resistance of concrete structures", Auto. Constr., 106, 102916. https://doi.org/10.1016/J.AUTCON.2019.102916.
  45. Naser, M.Z. and Chehab, A. (2018), "Materials and design concepts for space-resilient structures", Pr. Aerosp. Sci., 98, 74-90. https://doi.org/10.1016/j.paerosci.2018.03.004.
  46. Naser, M.Z. and Seitllari, A. (2019), "Concrete under fire: an assessment through intelligent pattern recognition", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-019-00805-1.
  47. Peris-Sayol, G., Paya-Zaforteza, I., Balasch-Parisi, S. and Alos-Moya, J. (2017), "Detailed analysis of the causes of bridge fires and their associated damage levels", J. Perform. Constr. Facil., 31(3), 04016108. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000977.
  48. Phan, L.T. and Carino, N.J. (2000), "Fire performance of high strength concrete: Research needs", Adv. Technol. Struct. Eng., ASCE, Reston, VA. https://doi.org/10.1061/40492(2000)181.
  49. Rodrigues, J.P.C., Laim, L. and Correia, A.M. (2010), "Behaviour of fiber reinforced concrete columns in fire", Compos. Struct., 92, 1263-1268. https://doi.org/10.1016/j.compstruct.2009.10.029.
  50. Saha, P., Prasad, M.L.V. and Kumar, P.R. (2017), "Predicting strength of SCC using artificial neural network and multivariable regression analysis", Comput. Concrete, 20(1), 31. https://doi.org/10.12989/CAC.2017.20.1.031.
  51. Seitllari, A. (2014), "Traffic flow simulation by Neuro-Fuzzy approach", Second International Conference on Traffic, Belgrade. https://trid.trb.org/view/1408239.
  52. Seitllari, A. and Kutay, M.E. (2018), "Soft computing tools to predict progression of percent embedment of aggregates in chip seals", Tran. Res. Record, 2672(12), 32-39.. https://doi.org/10.1177/0361198118756868.
  53. Seitllari, A., Kumbargeri, Y., Bilgiri, K. and Boz, I. (2019), "A soft computing approach to predict and evaluate asphalt mixture aging characteristics using asphaltene as a performance indicator", Mater. Struct., (pre-print).
  54. Shah, A.H. and Sharma, U.K. (2017), "Fire resistance and spalling performance of confined concrete columns", Constr. Build. Mater., 156, 161-174. https://doi.org/10.1016/j.conbuildmat.2017.08.167.
  55. Yavuz, G. (2019), "Determining the shear strength of FRP-RC beamsusing soft computing and code methods", Comput. Concrete, 23(1), 49. https://doi.org/10.12989/CAC.2019.23.1.049.
  56. Zadeh, L.A. (1995), "Discussion: Probability theory and fuzzy logic are complementary rather than competitive", Technometrics, 37(3), 271-276. https://doi.org/10.1080/00401706.1995.10484330.
  57. Zhang, B., Cullen, M. and Kilpatrick, T. (2016), “Spalling of heated high performance concrete due to thermal and hygric gradients”, Adv. Concrete Constr 4(1), 1-14. https://doi.org/10.12989/acc.2016.4.1.001.

Cited by

  1. A soft computing approach to predict and evaluate asphalt mixture aging characteristics using asphaltene as a performance indicator vol.52, pp.5, 2019, https://doi.org/10.1617/s11527-019-1402-5
  2. Evaluation Method of Relative Humidity Changes in Below-Grade Concrete Structure Space Depending on Different Waterproofing Material and Installation Method vol.13, pp.3, 2019, https://doi.org/10.3390/ma13030742
  3. Mechanistically Informed Machine Learning and Artificial Intelligence in Fire Engineering and Sciences vol.57, pp.6, 2019, https://doi.org/10.1007/s10694-020-01069-8