Acknowledgement
Supported by : Natural Science Foundation of China
References
- Alfano, G. (2006), "On the influence of the shape of the interface law on the application of cohesive-zone modelss", Compos. Sci. Technol., 66, 723-730. https://doi.org/10.1016/j.compscitech.2004.12.024.
- Al-Osta, M.A., Al-Sakkaf, H.A., Sharif, A.M., Ahmad, S. and Baluch, M.H. (2018), "Finite element modelling of corroded RC beams using cohesive surface bonding approach", Comput. Concrete, 22(2), 167-182. https://doi.org/10.12989/cac.2018.22.2.167.
- Bernardi, P., Cerioni, R. and Michelini, E. (2015), "Numerical modelling of the cracking behaviour of RC and SFRC shearcritical beams", Eng. Fract. Mech., 167, 151-166. https://doi.org/10.1016/j.engfracmech.2016.04.008.
- Bolander, J.E. and Sukumar, N. (2005), "Irregular lattice model for quasistatic crack propagation", Phys. Rev. B, 59, 1-20. https://doi.org/10.1103/PhysRevB.71.094106.
- Burns, S.J. and Hanley, K.J. (2017), "Establishing stable timesteps for DEM simulations of non-collinear planar collisions with linear contact laws", Int. J. Numer. Meth. Eng., 110, 186-200. https://doi.org/10.1002/nme.5361.
- Burns, S.J. and Piiroinen P.T. (2015), "Simulation and long-term behaviour of unconstrained planar rigid bodies with impact and friction", Int. J. Nonlin. Mech., 77, 312-324 https://doi.org/10.1016/j.ijnonlinmec.2015.09.011
- Chen, H., Xu, B., Mo, Y.L. and Zhou, T. (2018), "Behaviour of meso-scale heterogeneous concrete under uniaxial tensile and compressive loadings", Constr. Build. Mater., 178, 418-431. https://doi.org/10.1016/j.conbuildmat.2018.05.052.
- Chen, J., Pan, T.Y. and Huang, X.M. (2011), "Discrete element modelling of asphalt concrete cracking using a user-defined three-dimensional micromechanical approach", J. Wuhan Univ. Technol.-Mater. Sci. Ed., 26(6), 1215-1221. https://doi.org/10.1007/s11595-011-0393-z.
- Chen, J.Y., Zhang, W.P. and Gu, X.L. (2018), "Mesoscale model for cracking of concrete cover induced by reinforcement corrosion", Comput. Concrete, 22(1), 53-62. https://doi.org/10.12989/cac.2018.22.1.053.
- Contrafatto, L., Cuomo, M. and Gazzo, S. (2016), "A concrete homogenisation technique at meso-scale level accounting for damaging behaviour of cement paste and aggregates", Comput. Struct., 173, 1-18. https://doi.org/10.1016/j.compstruc.2016.05.009.
- Diamod, S. and Huang, J.D. (2001), "The ITZ in concrete: A different view based on image analysis and SEM observations", Cement Concrete Compos., 23(2), 179-188. https://doi.org/10.1016/S0958-9465(00)00065-2.
- Haeri, H., Sarfarazi, V., Zhu, Z. and Marji, M.F. (2018), "Simulating the influence of pore shape on the Brazilian tensile strength of concrete specimens using PFC2D", Comput. Concrete, 22(5), 469-479. https://doi.org/10.12989/cac.2018.22.5.469.
- He, J., Pan, F., Cai, C.S., Habte, F. and Chowdhury, A. (2018), "Finite-element modelling framework for predicting realistic responses of light-frame low-rise buildings under wind loads", Eng. Struct., 164, 53-69. https://doi.org/10.1016/j.engstruct.2018.01.034.
- Jirasek, M. and Rolshoven, S. (2003), "Comparison of integraltype nonlocal plasticity models for strain-softening materials", Int. J. Eng Sci., 41, 1553-1602. https://doi.org/10.1016/S0020-7225(03)00027-2.
- Kou, J.F., Xu, F., Guo, J.P. and Xu, Q. (2011), "Damage laws of cohesive zone model and selection of Parameters", J. Mech. Strength, 33(5), 714-718. (In Chinese)
- Kozicki, J. and Tejchman, J. (2007), "Effect of aggregate structure on fracture process in concrete using 2D lattice model", Arch. Mech., 59(4), 365-384.
- Li, D., Li, Z., Lv, C., Zhang, G. and Yin, Y. (2018), "A predictive model of the effective tensile and compressive strengths of concrete considering porosity and pore size", Constr. Build. Mater., 170, 520-526. https://doi.org/10.1016/j.conbuildmat.2018.03.028.
- Li, D., Li, Z., Lv, C., Zhang, G. and Yin, Y. (2018), "A predictive model of the effective tensile and compressive strengths of concrete considering porosity and pore size", Constr. Build. Mater., 170, 520-526. https://doi.org/10.1016/j.conbuildmat.2018.03.028.
- Long, X. and Lee, C.K. (2015), "Improved strut-and-tie method for 2D RC beam-column joints under monotonic loading", Comput. Concrete, 15(5), 807-831. https://doi.org/10.12989/cac.2015.15.5.807.
- Long, X., Bao, J.Q., Tan, K.H. and Lee, C.K. (2014), "Numerical simulation of reinforced concrete beam/column failure considering normal-shear stress interaction", Eng. Struct., 74, 32-43. https://doi.org/10.1016/j.engstruct.2014.05.011.
- Lopez, C.M., Carol, I. and Aguado, A. (2008), "Meso-structural study of concrete fracture using interface elements. II: compression, biaxial and Brazilian test", Mater. Struct., 41, 601-620. https://doi.org/10.1617/s11527-007-9312-3.
- Luthfi M.M., Zhuang, X.Y. and Rabczuk, T. (2018), "Computational modelling of fracture in encapsulation-based self-healing concrete using cohesive elements", Compos. Struct., 196, 63-75. https://doi.org/10.1016/j.compstruct.2018.04.066.
- Morales-Alonso, G., Rey-de-Pedraza, V., Galvez, F. and Cendon, D.A. (2018), "Numerical simulation of fracture of concrete at different loading rates by using the cohesive crack model", Theor. Appl. Fract. Mech., 96, 308-325. https://doi.org/10.1016/j.tafmec.2018.05.003.
- Nooru-Mohamed, M.B. (1992), "Mixed mode fracture of concrete: an experimental approach", Ph.D Thesis, TU Delft, The Netherlands.
- Pijaudier-Cabot, G. and Bazant, Z.P. (1987), "Nonlocal damage theory", ASCE J. Eng. Mech., 113, 1512-1533. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1512).
- Ren, W., Yang, Z., Sharma, R., Zhang, C.H. and Withers, P.J. (2015), "Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete", Eng. Fract. Mech., 133, 24-39. https://doi.org/10.1016/j.engfracmech.2014.10.016.
- Roubin, E., Colliat, J.B. and Benkemoun, N. (2015), "Meso-scale modelling of concrete: A morphological description based on excursion sets of random fields", Comput. Mater. Sci., 102, 183-195. https://doi.org/10.1016/j.commatsci.2015.02.039.
- Sadowski, L., Nikoo, M. and Nikoo, M. (2018), "Concrete compressive strength prediction using the imperialist competitive algorithm", Comput. Concrete, 22(4), 355-363. https://doi.org/10.12989/cac.2018.22.4.355.
- Shemirani, A.B., Sarfarazi, V., Haeri, H. and Marji, M.F. (2018), "A discrete element simulation of a punch-through shear test to investigate the confining pressure effects on the shear behaviour of concrete cracks", Comput. Concrete, 21(2), 189-197. https://doi.org/10.12989/cac.2018.21.2.189.
- Sirico, A., Michelini, E., Bernardi, P. and Cerioni, R. (2017), "Simulation of the response of shrunk reinforced concrete elements subjected to short-term loading: a bi-dimensional numerical approach", Eng. Fract. Mech., 174, 64-79. https://doi.org/10.1016/j.engfracmech.2016.11.020.
-
Skarzynski, L., Nitka, M. and Tejchman, J. (2015), "Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray
${\mu}$ CT images of internal structure", Eng. Fract. Mech., 147, 13-35. https://doi.org/10.1016/j.engfracmech.2015.08.010. - Tekin, I., Birgul, R. and Aruntas, H.Y. (2018), "X-ray CT monitoring of macro void development in mortars exposed to sulphate attack", Comput. Concrete, 21(4), 367-376. https://doi.org/10.12989/cac.2018.21.4.367.
-
Trawinski, W., Bohinski, J. and Tejchman, J. (2016), "Twodimensional simulations of concrete fracture at aggregate level with cohesive elements based on X-ray
${\mu}$ CT images", Eng. Fract. Mech., 168, 204-226. https://doi.org/10.1016/j.engfracmech.2016.09.012. - Walraven, J. and Reinhardt, H. (1981), "Theory and experiments on the mechanical behaviour of cracks in plain and reinforced concretes subjected to shear loading", Herony, 26, 26-33.
- Wang, Z.L., Gu, X.L. and Lin, F. (2011), "Experimental study on failure criterion of mortar under combined stresses", J. Build. Mater., 4(4), 235-245. (In Chinese)
- Xue, X.H. (2018), "Evaluation of concrete compressive strength based on an improved PSO-LSSVM model", Comput. Concrete, 21(5), 505-511. https://doi.org/10.12989/cac.2018.21.5.505.
- Yin, A., Yang, X., Zeng, G. and Gao, H. (2015), "Experimental and numerical investigation of fracture behaviour of asphalt mixture under direct shear loading", Constr. Build. Mater., 86, 21-32. https://doi.org/10.1016/j.conbuildmat.2015.03.099.
- Yin, A., Yang, X., Zhang, C., Zeng, G. and Yang, Z. (2015), "Three-dimensional heterogeneous fracture simulation of asphalt mixture under uniaxial tension with cohesive crack model", Constr. Build. Mater., 76, 103-117. https://doi.org/10.1016/j.conbuildmat.2014.11.065.
- Yin, A.Y., Yang, X.H. and Yang, Z.J. (2013), "2D and 3D fracture modelling of asphalt mixture with randomly distributed aggregates and embedded cohesive cracks", Constr. Build. Mater., 76, 103-117. https://doi.org/10.1016/j.piutam.2013.01.013.
- Zhang, J., Wang, Z., Yang, H., Wang, Z. and Shu, X. (2018), "3D meso-scale modelling of reinforcement concrete with high volume fraction of randomly distributed aggregates", Constr. Build. Mater., 164, 350-361. https://doi.org/10.1016/j.conbuildmat.2017.12.229.
- Zhang, S., Zhang, C., Liao, L. and Wang, C. (2018), "Numerical study of the effect of ITZ on the failure behaviour of concrete by using particle element modelling", Constr. Build. Mater., 170, 776-789. https://doi.org/10.1016/j.conbuildmat.2018.03.040.
- Zhang, Z., Song, X., Liu, Y., Wu, D. and Song, C. (2017), "Threedimensional mesoscale modelling of concrete composites by using random walking algorithm", Compos. Sci. Technol., 149, 235-245. https://doi.org/10.1016/j.compscitech.2017.06.015.
- Zhao, C., Zhong, X., Liu, B., Shu, X. and Shen, M. (2018), "A modified RBSM for simulating the failure process of RC sturctures", Comput. Concrete, 21(2), 219-229. https://doi.org/10.12989/cac.2018.21.2.219.
- Zhao, Q., Lisjak, A., Mahabadi, O., Liu, Q. and Grasselli, G. (2014), "Numerical simulation of hydraulic fracturing and associated microseismicity using finite-discrete element method", J. Rock Mech. Geotech. Eng., 6, 574-581. https://doi.org/10.1016/j.jrmge.2014.10.003.
- Zhao, S. and Sun, W. (2014), "Nano-mechanical behaviour of a green ultra-high performance concrete", Constr. Build. Mater., 63(7), 150-160. https://doi.org/10.1016/j.conbuildmat.2014.04.029.
- Zhong, X., Peng, X., Yan, S., Shen, M. and Zhai, Y. (2018), "Assessment of the feasibility of detecting concrete cracks in images acquired by unmanned aerial vehicles", Auto. Constr., 89, 49-57. https://doi.org/10.1016/j.autcon.2018.01.005.
- Zhong, X., Zhao, C., Liu, B., Shu, X. and Shen, M. (2018), "A 3-D RBSM for simulating the failure process of RC structures", Struct. Eng. Mech., 65(3), 291-302. https://doi.org/10.12989/sem.2018.65.3.291.
Cited by
- Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors vol.25, pp.3, 2019, https://doi.org/10.12989/cac.2020.25.3.215
- A proposal for an approach for meso scale modeling for concrete based on rigid body spring model vol.27, pp.3, 2019, https://doi.org/10.12989/cac.2021.27.3.283
- Forced vibration analysis of a micro sandwich plate with an isotropic/orthotropic cores and polymeric nanocomposite face sheets vol.28, pp.3, 2019, https://doi.org/10.12989/cac.2021.28.3.259