DOI QR코드

DOI QR Code

Biophysical effect of lipid modification at palmitoylation site on the structure of Caveolin 3

  • Ma, Yu-Bin (College of Pharmacy, Chungbuk National University Cheongju) ;
  • Kang, Dong-Hoon (College of Pharmacy, Chungbuk National University Cheongju) ;
  • Kim, Myeongkyu (Protein Structure Group, Korea Basic Science Institute) ;
  • Kim, Ji-Hun (College of Pharmacy, Chungbuk National University Cheongju)
  • 투고 : 2019.09.10
  • 심사 : 2019.09.16
  • 발행 : 2019.09.20

초록

Caveolae are small plasma membrane invaginations that play many roles in signal transduction, endocytosis, mechanoprotection, lipid metabolism. The most important protein in caveolae is the integral membrane protein, caveolin, which is divided into three families such as caveolin 1, caveolin 2, and caveolin 3. Caveolin 1 and 3 are known to incorporate palmitate through linkage to three cysteine residues. Regulation of the protein palmitoylation cycle is important for the cellular processes such as intracellular localization of the target protein, membrane association, conformation, protein-protein interaction, and activity. However, the detailed aspect of individual palmitoylation has not been studied. In the present work, the role of each lipid modification at three cysteines was studied by NMR. Our results suggest that each lipid modification at the natively palmitoylation site has its own roles. For example, lipidations to C106 and C129 are play a role in structural stabilization, however, interestingly, lipid modification to C116 interrupts the structural stabilization.

키워드

참고문헌

  1. K. G. Rothberg, J. E. Heuser, W. C. Donzell, Y. S. Ying, J. R. Glenney, and R. G. Anderson, Cell 68, 673 (1992) https://doi.org/10.1016/0092-8674(92)90143-Z
  2. E. Yamada, J. Biophys. Biochem. Cytol. 1, 445 (1955) https://doi.org/10.1083/jcb.1.5.445
  3. R. G. Parton and K. Simons, Nat. Rev. Mol. Cell Biol. 8, 185 (2007) https://doi.org/10.1038/nrm2122
  4. T. M. Williams and M. P. Lisanti, Ann. Med. 36, 584 (2004) https://doi.org/10.1080/07853890410018899
  5. L. Kozera, E. White, and S. Calaghan, PLoS One 4, e8312 (2009) https://doi.org/10.1371/journal.pone.0008312
  6. B. Razani, S. E. Woodman, and M. P. Lisanti, Pharmacol. Rev. 54, 431 (2002) https://doi.org/10.1124/pr.54.3.431
  7. T. V. Kurzchalia, P. Dupree, R. G. Parton, R. Kellner, H. Virta, M. Lehnert, and K. Simons, J. Cell Biol. 118, 1003 (1992) https://doi.org/10.1083/jcb.118.5.1003
  8. A. Hayer, M. Stoeber, D. Ritz, S. Engel, H. H. Meyer, and A. Helenius, J. Cell Biol. 191, 615 (2010) https://doi.org/10.1083/jcb.201003086
  9. M. Bastiani and R. G. Parton, J. Cell Sci. 123, 3831 (2010) https://doi.org/10.1242/jcs.070102
  10. F. Galbiati, B. Razani, and M. P. Lisanti, Trends Mol. Med. 7, 435 (2001) https://doi.org/10.1016/S1471-4914(01)02105-0
  11. M. Drab, P. Verkade, M. Elger, M. Kasper, M. Lohn, B. Lauterbach, J. Menne, C. Lindschau, F. Mende, F. C. Luft, A. Schedl, H. Haller, and T. V. Kurzchalia, Science 293, 2449 (2001) https://doi.org/10.1126/science.1062688
  12. A. M. Fra, E. Williamson, K. Simons, and R. G. Parton, Proc. Natl. Acad. Sci. USA 92, 8655 (1995)
  13. M. T. Dotti, A. Malandrini, S. Gambelli, C. Salvadori, N. De Stefano, and A. Federico, J. Neurol. Sci 243, 61 (2006) https://doi.org/10.1016/j.jns.2005.11.032
  14. S. E. Woodman, F. Sotgia, F. Galbiati, C. Minetti, and M. P. Lisanti, Neurology 62, 538 (2004) https://doi.org/10.1212/WNL.62.4.538
  15. M. Sargiacomo, P. E. Scherer, Z. Tang, E. Kubler, K. S. Song, M. C. Sanders, and M. P. Lisanti, Proc. Natl. Acad. Sci. USA 92, 9407 (1995)
  16. G. Whiteley, R. F. Collins, and A. Kitmitto, J. Biol. Chem. 287, 40302 (2012) https://doi.org/10.1074/jbc.M112.377085
  17. J. Lee and K. J. Glover, Biochim. Biophys. Acta. 1818, 1158 (2012) https://doi.org/10.1016/j.bbamem.2011.12.033
  18. D. J. Dietzen, W. R. Hastings, and D. M. Lublin, J. Biol. Chem. 270, 6838 (1995) https://doi.org/10.1074/jbc.270.12.6838
  19. D. el-Husseini Ael and D. S. Bredt, Nat. Rev. Neurosci. 3, 791 (2002) https://doi.org/10.1038/nrn940
  20. E. Conibear and N. G. Davis, J. Cell Sci. 123, 4007 (2010) https://doi.org/10.1242/jcs.059287
  21. M. Linder and R. Deschenes, Methods 40, 125 (2006) https://doi.org/10.1016/j.ymeth.2006.08.014
  22. S. Monier, D. J. Dietzen, W. R. Hastings, D. M. Lublin, and T. V. Kurzchalia, FEBS Lett. 388, 143 (1996) https://doi.org/10.1016/0014-5793(96)00519-4
  23. F. Galbiati, D. Volonte, C. Minetti, J. B. Chu, and M. P. Lisanti, J. Biol. Chem. 274, 25632 (1999) https://doi.org/10.1074/jbc.274.36.25632
  24. J. H. Kim, D. Peng, J. P. Schlebach, A. Hadziselimovic, and C. R. Sanders, Biochemistry 53, 4320 (2014) https://doi.org/10.1021/bi5005238
  25. D. Nietlispach, J. Biomol. NMR. 31, 161 (2005) https://doi.org/10.1007/s10858-004-8195-7
  26. F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, J. Biomol. NMR. 6, 277 (1995) https://doi.org/10.1007/BF00197809
  27. T. D. Goddard and D. G. Kneller, SPARKY 3. University of California, San Francisco, CA (2003)
  28. I. R. Kleckner and M. P. Foster, Biochim. Biophys. Acta 1814, 942 (2011) https://doi.org/10.1016/j.bbapap.2010.10.012
  29. H. Lee, S. E. Woodman, J. A. Engelman, D. Volonte, F. Galbiati, H. L. Kaufman, D. M. Lublin, and M. P. Lisanti, J. Biol. Chem. 276, 35150 (2001) https://doi.org/10.1074/jbc.M104530200