References
- Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453.
- Bennai, R., Fourn, H., Ait Atmane, H., Tounsi, A. and Bessaim, A. (2019), "Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory", Wind Struct., 28(1), 49-62. https://doi.org/10.12989/was.2019.28.1.049.
- Chen, Y., Jin, G., Zhang, C., Ye, T. and Xue, Y. (2018), "Thermal vibration of FGM beams with general boundary conditions using a higher-order shear deformation theory", Compos. Part B, 153, 376-386. https://doi.org/10.1016/j.compositesb.2018.08.111.
- Ebrahimi, F. and Safarpour, H. (2018), "Vibration analysis of inhomogeneous nonlocal beams via a modified couple stress theory incorporating surface effects", Wind Struct., 27(6), 431-438. https://doi.org/10.12989/was.2018.27.6.431.
- Ebrahimi, F. and Salari, E. (2015), "Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment", Acta Astronaut, 113, 29-50. https://doi.org/10.1016/j.actaastro.2015.03.031.
- El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.
- Giunta, G., Crisafulli, D., Belouettar, S. and Carrera, E. (2013), "A thermo-mechanical analysis of functionally graded beams via hierarchical modeling", Compos. Struct., 95, 676-690. https://doi.org/10.1016/j.compstruct.2012.08.013.
- Hamdi, H. and Farah, K. (2018), "Beam finite element model of a vibrate wind blade in large elastic deformation", Wind Struct., 26(1), 25-34. https://doi.org/10.12989/was.2018.26.1.025.
- Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099.
- Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157.
- Mouli, C.B., K. Ramji, Kar, V.R., Panda, S.K., Lalepalli, A.K. and Pandey, H.K. (2018), "Numerical study of temperature dependent eigenfrequency responses of tilted functionally graded shallow shell structures", Struct. Eng. Mech., 68(5), 527-536. https://doi.org/10.12989/sem.2018.68.5.527.
- Rong, X.N., Xu, R.Q., Wang, H.Y. and Feng, S.Y. (2018), "Analytical solution for natural frequency of monopile supported wind turbine towers", Wind Struct., 25(5), 459-474. https://doi.org/10.12989/was.2017.25.5.459.
- Sankar, B.V. and Tzeng, J.T. (2002), "Thermal stresses in functionally graded beams", AIAA J., 40(6), 1228-1232. https://doi.org/10.2514/2.1775.
- Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
- Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240, 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.
- Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30, 741-747. https://doi.org/10.1016/j.matdes.2008.05.015.
- Trinh, L.C., Vo, T.P., Thai, H.T., T.K. and Nguyen, T.K. (2016), "An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads", Compos. Part B, 100, 152-163. https://doi.org/10.1016/j.compositesb.2016.06.067.
- Wattanasakulpong, N., Prusty, B.G. and Kelly, D.W. (2011), "Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams", Int. J. Mech. Sci., 53, 734-743. https://doi.org/10.1016/j.ijmecsci.2011.06.005.
- Wu, H., Kitipornchai, S. and Yang, J. (2018), "Free vibration of thermo-electro-mechanically postbuckled FG-CNTRC beams with geometric imperfections", Steel Compos. Stuct., 39(3), 319-332. https://doi.org/10.12989/scs.2018.29.3.319.
Cited by
- Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.225
- Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations vol.25, pp.4, 2019, https://doi.org/10.12989/cac.2020.25.4.311
- Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory vol.26, pp.5, 2020, https://doi.org/10.12989/cac.2020.26.5.439
- Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2019, https://doi.org/10.12989/scs.2021.38.1.001
- The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory vol.10, pp.1, 2019, https://doi.org/10.12989/anr.2021.10.1.015
- Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2019, https://doi.org/10.12989/cac.2021.27.1.073
- Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051
- On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2019, https://doi.org/10.12989/scs.2021.39.2.149