DOI QR코드

DOI QR Code

Plane wave propagation in transversely isotropic magneto-thermoelastic rotating medium with fractional order generalized heat transfer

  • Lata, Parveen (Department of Basic and Applied Sciences, Punjabi University) ;
  • Kaur, Iqbal (Department of Basic and Applied Sciences, Punjabi University)
  • Received : 2019.05.04
  • Accepted : 2019.08.27
  • Published : 2019.09.25

Abstract

The aim of the present investigation is to examine the propagation of plane waves in transversely isotropic homogeneous magneto thermoelastic rotating medium with fractional order heat transfer. It is found that, for two dimensional assumed model, there exist three types of coupled longitudinal waves (quasi-longitudinal, quasi-transverse and quasi-thermal waves). The wave characteristics such as phase velocity, attenuation coefficients, specific loss, penetration depths, energy ratios and amplitude ratios of various reflected and transmitted waves are computed and depicted graphically. The conservation of energy at the free surface is verified. The effects of rotation and fractional order parameter by varying different values are represented graphically.

Keywords

References

  1. Abd-Alla, A.E.N.N. and Alshaikh, F. (2015), "The Mathematical model of reflection of plane waves in a transversely isotropic magneto-thermoelastic medium under rotation", New Developments in Pure and Applied Mathematics, 282-289.
  2. Abouelregal, A.E. (2013), "Generalized thermoelastic infinite transversely isotropic body with a cylindrical cavity due to moving heat source and harmonically varying heat", Meccanica, 48, 1731-1745. https://doi.org/10.1007/s11012-013-9705-z
  3. Alesemi, M. (2018), "Plane waves in magneto-thermoelastic anisotropic medium based on (L-S) theory under the effect of Coriolis and centrifugal forces", Proceedings of the International Conference on Materials Engineering and Applications (pp. 01-12). IOP Conf. Series: Materials Science and Engineering.
  4. Bayones, F. and Abd-Alla, A. (2017), "Eigenvalue approach to two dimensional coupled magneto-thermoelasticity in a rotating isotropic medium", Results in Physics, 7, 2941-2949. https://doi.org/10.1016/j.rinp.2017.07.053
  5. Borejko, P. (1996), "Reflection and transmission coefficients for three dimensional plane waves in elastic media", Wave Motion, 24, 371-393. https://doi.org/10.1016/S0165-2125(96)00026-1
  6. Deswal, S. and Kalkal, K.K. (2015), "Three-dimensional half-space problem within the framework of two-temperature thermo-viscoelasticity with three-phase-lag effects", Appl. Math. Model., 39, 7093-7112. https://doi.org/10.1016/j.apm.2015.02.045
  7. Dhaliwal, R. and Singh, A. (1980), Dynamic coupled thermoelasticity. New Delhi,India: Hindustan Publication Corporation.
  8. Ezzat, M. and El-Barrry, A. (2017), " magneto-thermoelastic materials with phase-lag Green-Naghdi theories" . Steel Compos. Struct., 24(3), 297-307. doi:http://dx.doi.org/10.12989/scs.2017.24.3.297
  9. Hassan, M., Marin, M., Ellahi, R. and Alamri, S. (2018), "Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/water hybrid-nanofluids", Heat Transfer Res., 49(18), 1837-1848. doi:10.1615/HeatTransRes.2018025569
  10. Kaliski, S. (1963), "Absorption of Magnetoviscoelastic surface waves in a real conductor in a magnetic field", Proc. Vibr. Problems, 4, 319-329.
  11. Kaur, I. and Lata, P. (2019b), "Effect of hall current on propagation of plane wave in transversely isotropic thermoelastic medium with two temperature and fractional order heat transfer", SN Applied Sciences, 1:900. doi:https://doi.org/10.1007/s42452-019-0942-1
  12. Kaur, I. and Lata, P. (2019f), "Transversely isotropic thermoelastic thin circular plate with constant and periodically varying load and heat source", Int. J. Mech. Mater. Eng., 14(10), 1-13. doi:https://doi.org/10.1186/s40712-019-0107-4
  13. Kumar, R. and Chawla, V. (2011), "A study of plane wave propagation in anisotropic thteephase-lag model and two-phae-lag model", Int. Commun. Heat Mass Transfer., 38, 1262-1268. https://doi.org/10.1016/j.icheatmasstransfer.2011.07.005
  14. Kumar, R. and Gupta, R.R. (2012), "Plane waves reflection in micropolar transversely isotropic generalized thermoelastic half-space", Mathematical Sci., 6(6), 1-10. https://doi.org/10.1186/2251-7456-6-1
  15. Kumar, R. and Gupta, V. (2015),."Dual-Phase-Lag Model of Wave Propagation at the Interface between Elastic and Thermoelastic Diffusion Media", J. Eng. Phys. Thermophys., 88(1), 252-265. https://doi.org/10.1007/s10891-015-1188-4
  16. Kumar, R. and Kansal, T. (2017), "Reflection and Refraction of Plane HarmonicWaves at an Interface Between Elastic Solid and Magneto-thermoelastic Diffusion Solid with Voids., Comput. Method. Sci. Technol., 23(1), 43-56. https://doi.org/10.12921/cmst.2016.0000036
  17. Kumar, R., Sharma, N. and Lata, P. (2016), "Effects of thermal and diffusion phase-lags in a plate with axisymmetric heat supply", Multidiscip. Model. Mater. Struct., 12(2), 275-290. https://doi.org/10.1108/MMMS-08-2015-0042
  18. Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions in transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Model., 40(13-14), 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061
  19. Lata, P. (2018), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(4). doi:http://dx.doi.org/10.12989/scs.2018.27.4.439
  20. Lata, P. (2018b), "Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium", Struct. Eng. Mech., 66(1), 113-124. https://doi.org/10.12989/SEM.2018.66.1.113
  21. Lata, P. and Kaur, I. (2019a), "Transversely isotropic thick plate with two temperature and GN type-III in frequency domain", Coupled Syst. Mech., 8(1), 55-70. https://doi.org/10.12989/CSM.2019.8.1.055
  22. Lata, P. and Kaur, I. (2019c), "Thermomechanical Interactions in Transversely Isotropic Thick Circular Plate with Axisymmetric Heat Supply". Struct. Eng. Mech., 69(6), 607-614. doi:http://dx.doi.org/10.12989/sem.2019.69.6.607
  23. Lata, P. and Kaur, I. (2019d), "Transversely isotropic magneto thermoelastic solid with two temperature and without energy dissipation in generalized thermoelasticity due to inclined load", SN Applied Sciences, 1:426. doi:https://doi.org/10.1007/s42452-019-0438-z
  24. Lata, P. and Kaur, I. (2019e), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., 70(2), 245-255. doi:http://dx.doi.org/10.12989/sem.2019.70.2.245
  25. Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., 22(3), 567-587. doi:http://dx.doi.org/10.12989/scs.2016.22.3.567
  26. Maitya, N., Barikb, S. and Chaudhuri, P. (2017), "Propagation of plane waves in a rotating magneto-thermoelastic fiber-reinforced medium under G-N theory", Appl. Comput. Mech., 11, 47-58.
  27. Marin, M. (1994), "The Lagrange identity method in thermoelasticity of bodies with microstructure",. Int. J. Eng. Sci., 32(8), 1229-1240. doi:https://doi.org/10.1016/0020-7225(94)90034-5
  28. Marin, M. (1997), "Cesaro means in thermoelasticity of dipolar bodies", Acta Mechanica, 122(1-4), 155-168. https://doi.org/10.1007/BF01181996
  29. Marin, M. (1998), "Contributions on uniqueness in thermoelastodynamics on bodies with voids", Revista Ciencias Matematicas, 16(2), 101-109.
  30. Marin, M. (1999), "An evolutionary equation in thermoelasticity of dipolar bodies", J. Math. Phys., 40(3), 1391-1399. doi:https://doi.org/10.1063/1.532809
  31. Marin, M. (2009), "On the minimum principle for dipolar materials with stretch", Nonlinear Anal. Real World Appl.,10(3), 1572-1578. https://doi.org/10.1016/j.nonrwa.2008.02.001
  32. Marin, M. (2010), "A partition of energy in thermoelasticity of microstretch bodies", Nonlinear Analysis: Real World Appl., 11(4), 2436-2447. https://doi.org/10.1016/j.nonrwa.2009.07.014
  33. Marin, M. and O chsner, A. (2017), "The effect of a dipolar structure on the Holder stability in Green-Naghdi thermoelasticity", Continuum Mech. Thermodyn., 29, 1365-1374. https://doi.org/10.1007/s00161-017-0585-7
  34. Marin, M., & Craciun, E. (2017). Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials. Composites Part B: Engineering, 126, 27-37. https://doi.org/10.1016/j.compositesb.2017.05.063
  35. Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Modeling a microstretch thermoelastic body with Two temperatures", Abstract and Applied Analysis, 2013, 1-7.
  36. Othman, M. I. and Song, Y.Q. (2006), "The effect of rotation on the reflection of magneto-thermoelastic waves under thermoelasticity without energy dissipation", Acta Mech, 184, 89-204.
  37. Othman, M. I., Abo-Dahab, S.M. and S.Alsebaey, O.N. (2017), "Reflection of plane waves from a rotating Magneto-Thermoelastic medium with two-temperature and initial srtress under three theories", Mechanics Mech. Eng., 21(2), 217-232.
  38. Othman, M.I. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory",. Results in Physics, 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012
  39. Othman, M.I. and Song, Y.Q. (2008), "Reflection of magneto-thermoelastic waves from a rotating elastic half-space", Int. J. Eng. Sci., 46, 459-474. https://doi.org/10.1016/j.ijengsci.2007.12.004
  40. Othman, M.I., Khan, A., Jahangir, R. and Jahangir, A. (2019), "Analysis on plane waves through magneto-thermoelastic microstretch rotating medium with temperature dependent elastic properties", Appl.Math. Model., 65, 535-548. https://doi.org/10.1016/j.apm.2018.08.032
  41. Said, S.M. (2017), "A fiber-reinforced thermoelastic medium with an internal heat source due to hydrostatic initial stress and gravity for the three-phase-lag model", Multidiscip. Model. Mater. Struct., 13(1), 83-99. https://doi.org/10.1108/MMMS-08-2016-0040
  42. Schoenberg, M. and Censor, D. (1973), "Elastic waves in rotating media", Quarterly Appl. Math., 31, 115-125. https://doi.org/10.1090/qam/99708
  43. Sharma, J.N. and Kaur, R. (2015), "Modeling and analysis of forced vibrations in transversely isotropic thermoelastic thin beams", Meccanica, 50, 189-205. https://doi.org/10.1007/s11012-014-0063-2
  44. Sinha, S. and Elsibai, K. (1997), "Reflection and refraction of thermoelastic waves at an interface of two semi-infinite media with two relaxation times", J. Thermal Stresses, 20, 129-145. https://doi.org/10.1080/01495739708956095
  45. Slaughter, W.S. (2002), The Linearised Theory of Elasticity., Birkhausar.
  46. Ting, T.C. (2004), "Surface waves in a rotating anisotropic elastic half-space", Wave Motion, 40, 329-346. https://doi.org/10.1016/j.wavemoti.2003.10.005
  47. Wu, C. and Lundberg, B. (1996), "Reflection and transmission of the energy of harmonic elastic waves in a bent bar", J. Sound Vib., 190, 645-659. https://doi.org/10.1006/jsvi.1996.0083
  48. Youssef, H. (2006), "Two-dimensional generalized thermoelasticity problem for a half space subjected to ramp -type heating.", Eur. J. Mech. A/solid, 25, 745-763. https://doi.org/10.1016/j.euromechsol.2005.11.005
  49. Youssef, H. (2010), "Theory of fractional order generalized thermoelasticity", J.Heat Transfer. - ASME, 132, 1-7. https://doi.org/10.1115/1.4000705
  50. Youssef, H.M. (2013), "State-space approach to two-temperature generalized thermoelasticity without energy dissipation of medium subjected to moving heat source",. Appl. Math. Mech. -Engl. Ed., 34(1), 63-74 . https://doi.org/10.1007/s10483-013-1653-7
  51. Youssef, H.M. (2016), "Theory of generalized thermoelasticity with fractional order strain", J. Vib. Control, 22(18), 3840-3857. https://doi.org/10.1177/1077546314566837

Cited by

  1. Thermomechanical interactions in transversely isotropic magneto-thermoelastic medium with fractional order generalized heat transfer and hall current vol.27, pp.1, 2020, https://doi.org/10.1080/25765299.2019.1703494
  2. Deformation in transversely isotropic thermoelastic thin circular plate due to multi-dual-phase-lag heat transfer and time-harmonic sources vol.27, pp.1, 2020, https://doi.org/10.1080/25765299.2020.1781328
  3. Memory-dependent derivative approach on magneto-thermoelastic transversely isotropic medium with two temperatures vol.15, pp.1, 2020, https://doi.org/10.1186/s40712-020-00122-2
  4. Reflection of plane harmonic wave in rotating media with fractional order heat transfer vol.9, pp.4, 2019, https://doi.org/10.12989/amr.2020.9.4.289
  5. Plane wave in non-local semiconducting rotating media with Hall effect and three-phase lag fractional order heat transfer vol.16, pp.1, 2019, https://doi.org/10.1186/s40712-021-00137-3