References
- Abd-Alla, A.E.N.N. and Alshaikh, F. (2015), "The Mathematical model of reflection of plane waves in a transversely isotropic magneto-thermoelastic medium under rotation", New Developments in Pure and Applied Mathematics, 282-289.
- Abouelregal, A.E. (2013), "Generalized thermoelastic infinite transversely isotropic body with a cylindrical cavity due to moving heat source and harmonically varying heat", Meccanica, 48, 1731-1745. https://doi.org/10.1007/s11012-013-9705-z
- Alesemi, M. (2018), "Plane waves in magneto-thermoelastic anisotropic medium based on (L-S) theory under the effect of Coriolis and centrifugal forces", Proceedings of the International Conference on Materials Engineering and Applications (pp. 01-12). IOP Conf. Series: Materials Science and Engineering.
- Bayones, F. and Abd-Alla, A. (2017), "Eigenvalue approach to two dimensional coupled magneto-thermoelasticity in a rotating isotropic medium", Results in Physics, 7, 2941-2949. https://doi.org/10.1016/j.rinp.2017.07.053
- Borejko, P. (1996), "Reflection and transmission coefficients for three dimensional plane waves in elastic media", Wave Motion, 24, 371-393. https://doi.org/10.1016/S0165-2125(96)00026-1
- Deswal, S. and Kalkal, K.K. (2015), "Three-dimensional half-space problem within the framework of two-temperature thermo-viscoelasticity with three-phase-lag effects", Appl. Math. Model., 39, 7093-7112. https://doi.org/10.1016/j.apm.2015.02.045
- Dhaliwal, R. and Singh, A. (1980), Dynamic coupled thermoelasticity. New Delhi,India: Hindustan Publication Corporation.
- Ezzat, M. and El-Barrry, A. (2017), " magneto-thermoelastic materials with phase-lag Green-Naghdi theories" . Steel Compos. Struct., 24(3), 297-307. doi:http://dx.doi.org/10.12989/scs.2017.24.3.297
- Hassan, M., Marin, M., Ellahi, R. and Alamri, S. (2018), "Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/water hybrid-nanofluids", Heat Transfer Res., 49(18), 1837-1848. doi:10.1615/HeatTransRes.2018025569
- Kaliski, S. (1963), "Absorption of Magnetoviscoelastic surface waves in a real conductor in a magnetic field", Proc. Vibr. Problems, 4, 319-329.
- Kaur, I. and Lata, P. (2019b), "Effect of hall current on propagation of plane wave in transversely isotropic thermoelastic medium with two temperature and fractional order heat transfer", SN Applied Sciences, 1:900. doi:https://doi.org/10.1007/s42452-019-0942-1
- Kaur, I. and Lata, P. (2019f), "Transversely isotropic thermoelastic thin circular plate with constant and periodically varying load and heat source", Int. J. Mech. Mater. Eng., 14(10), 1-13. doi:https://doi.org/10.1186/s40712-019-0107-4
- Kumar, R. and Chawla, V. (2011), "A study of plane wave propagation in anisotropic thteephase-lag model and two-phae-lag model", Int. Commun. Heat Mass Transfer., 38, 1262-1268. https://doi.org/10.1016/j.icheatmasstransfer.2011.07.005
- Kumar, R. and Gupta, R.R. (2012), "Plane waves reflection in micropolar transversely isotropic generalized thermoelastic half-space", Mathematical Sci., 6(6), 1-10. https://doi.org/10.1186/2251-7456-6-1
- Kumar, R. and Gupta, V. (2015),."Dual-Phase-Lag Model of Wave Propagation at the Interface between Elastic and Thermoelastic Diffusion Media", J. Eng. Phys. Thermophys., 88(1), 252-265. https://doi.org/10.1007/s10891-015-1188-4
- Kumar, R. and Kansal, T. (2017), "Reflection and Refraction of Plane HarmonicWaves at an Interface Between Elastic Solid and Magneto-thermoelastic Diffusion Solid with Voids., Comput. Method. Sci. Technol., 23(1), 43-56. https://doi.org/10.12921/cmst.2016.0000036
- Kumar, R., Sharma, N. and Lata, P. (2016), "Effects of thermal and diffusion phase-lags in a plate with axisymmetric heat supply", Multidiscip. Model. Mater. Struct., 12(2), 275-290. https://doi.org/10.1108/MMMS-08-2015-0042
- Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions in transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Model., 40(13-14), 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061
- Lata, P. (2018), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(4). doi:http://dx.doi.org/10.12989/scs.2018.27.4.439
- Lata, P. (2018b), "Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium", Struct. Eng. Mech., 66(1), 113-124. https://doi.org/10.12989/SEM.2018.66.1.113
- Lata, P. and Kaur, I. (2019a), "Transversely isotropic thick plate with two temperature and GN type-III in frequency domain", Coupled Syst. Mech., 8(1), 55-70. https://doi.org/10.12989/CSM.2019.8.1.055
- Lata, P. and Kaur, I. (2019c), "Thermomechanical Interactions in Transversely Isotropic Thick Circular Plate with Axisymmetric Heat Supply". Struct. Eng. Mech., 69(6), 607-614. doi:http://dx.doi.org/10.12989/sem.2019.69.6.607
- Lata, P. and Kaur, I. (2019d), "Transversely isotropic magneto thermoelastic solid with two temperature and without energy dissipation in generalized thermoelasticity due to inclined load", SN Applied Sciences, 1:426. doi:https://doi.org/10.1007/s42452-019-0438-z
- Lata, P. and Kaur, I. (2019e), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., 70(2), 245-255. doi:http://dx.doi.org/10.12989/sem.2019.70.2.245
- Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., 22(3), 567-587. doi:http://dx.doi.org/10.12989/scs.2016.22.3.567
- Maitya, N., Barikb, S. and Chaudhuri, P. (2017), "Propagation of plane waves in a rotating magneto-thermoelastic fiber-reinforced medium under G-N theory", Appl. Comput. Mech., 11, 47-58.
- Marin, M. (1994), "The Lagrange identity method in thermoelasticity of bodies with microstructure",. Int. J. Eng. Sci., 32(8), 1229-1240. doi:https://doi.org/10.1016/0020-7225(94)90034-5
- Marin, M. (1997), "Cesaro means in thermoelasticity of dipolar bodies", Acta Mechanica, 122(1-4), 155-168. https://doi.org/10.1007/BF01181996
- Marin, M. (1998), "Contributions on uniqueness in thermoelastodynamics on bodies with voids", Revista Ciencias Matematicas, 16(2), 101-109.
- Marin, M. (1999), "An evolutionary equation in thermoelasticity of dipolar bodies", J. Math. Phys., 40(3), 1391-1399. doi:https://doi.org/10.1063/1.532809
- Marin, M. (2009), "On the minimum principle for dipolar materials with stretch", Nonlinear Anal. Real World Appl.,10(3), 1572-1578. https://doi.org/10.1016/j.nonrwa.2008.02.001
- Marin, M. (2010), "A partition of energy in thermoelasticity of microstretch bodies", Nonlinear Analysis: Real World Appl., 11(4), 2436-2447. https://doi.org/10.1016/j.nonrwa.2009.07.014
- Marin, M. and O chsner, A. (2017), "The effect of a dipolar structure on the Holder stability in Green-Naghdi thermoelasticity", Continuum Mech. Thermodyn., 29, 1365-1374. https://doi.org/10.1007/s00161-017-0585-7
- Marin, M., & Craciun, E. (2017). Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials. Composites Part B: Engineering, 126, 27-37. https://doi.org/10.1016/j.compositesb.2017.05.063
- Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Modeling a microstretch thermoelastic body with Two temperatures", Abstract and Applied Analysis, 2013, 1-7.
- Othman, M. I. and Song, Y.Q. (2006), "The effect of rotation on the reflection of magneto-thermoelastic waves under thermoelasticity without energy dissipation", Acta Mech, 184, 89-204.
- Othman, M. I., Abo-Dahab, S.M. and S.Alsebaey, O.N. (2017), "Reflection of plane waves from a rotating Magneto-Thermoelastic medium with two-temperature and initial srtress under three theories", Mechanics Mech. Eng., 21(2), 217-232.
- Othman, M.I. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory",. Results in Physics, 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012
- Othman, M.I. and Song, Y.Q. (2008), "Reflection of magneto-thermoelastic waves from a rotating elastic half-space", Int. J. Eng. Sci., 46, 459-474. https://doi.org/10.1016/j.ijengsci.2007.12.004
- Othman, M.I., Khan, A., Jahangir, R. and Jahangir, A. (2019), "Analysis on plane waves through magneto-thermoelastic microstretch rotating medium with temperature dependent elastic properties", Appl.Math. Model., 65, 535-548. https://doi.org/10.1016/j.apm.2018.08.032
- Said, S.M. (2017), "A fiber-reinforced thermoelastic medium with an internal heat source due to hydrostatic initial stress and gravity for the three-phase-lag model", Multidiscip. Model. Mater. Struct., 13(1), 83-99. https://doi.org/10.1108/MMMS-08-2016-0040
- Schoenberg, M. and Censor, D. (1973), "Elastic waves in rotating media", Quarterly Appl. Math., 31, 115-125. https://doi.org/10.1090/qam/99708
- Sharma, J.N. and Kaur, R. (2015), "Modeling and analysis of forced vibrations in transversely isotropic thermoelastic thin beams", Meccanica, 50, 189-205. https://doi.org/10.1007/s11012-014-0063-2
- Sinha, S. and Elsibai, K. (1997), "Reflection and refraction of thermoelastic waves at an interface of two semi-infinite media with two relaxation times", J. Thermal Stresses, 20, 129-145. https://doi.org/10.1080/01495739708956095
- Slaughter, W.S. (2002), The Linearised Theory of Elasticity., Birkhausar.
- Ting, T.C. (2004), "Surface waves in a rotating anisotropic elastic half-space", Wave Motion, 40, 329-346. https://doi.org/10.1016/j.wavemoti.2003.10.005
- Wu, C. and Lundberg, B. (1996), "Reflection and transmission of the energy of harmonic elastic waves in a bent bar", J. Sound Vib., 190, 645-659. https://doi.org/10.1006/jsvi.1996.0083
- Youssef, H. (2006), "Two-dimensional generalized thermoelasticity problem for a half space subjected to ramp -type heating.", Eur. J. Mech. A/solid, 25, 745-763. https://doi.org/10.1016/j.euromechsol.2005.11.005
- Youssef, H. (2010), "Theory of fractional order generalized thermoelasticity", J.Heat Transfer. - ASME, 132, 1-7. https://doi.org/10.1115/1.4000705
- Youssef, H.M. (2013), "State-space approach to two-temperature generalized thermoelasticity without energy dissipation of medium subjected to moving heat source",. Appl. Math. Mech. -Engl. Ed., 34(1), 63-74 . https://doi.org/10.1007/s10483-013-1653-7
- Youssef, H.M. (2016), "Theory of generalized thermoelasticity with fractional order strain", J. Vib. Control, 22(18), 3840-3857. https://doi.org/10.1177/1077546314566837
Cited by
- Thermomechanical interactions in transversely isotropic magneto-thermoelastic medium with fractional order generalized heat transfer and hall current vol.27, pp.1, 2020, https://doi.org/10.1080/25765299.2019.1703494
- Deformation in transversely isotropic thermoelastic thin circular plate due to multi-dual-phase-lag heat transfer and time-harmonic sources vol.27, pp.1, 2020, https://doi.org/10.1080/25765299.2020.1781328
- Memory-dependent derivative approach on magneto-thermoelastic transversely isotropic medium with two temperatures vol.15, pp.1, 2020, https://doi.org/10.1186/s40712-020-00122-2
- Reflection of plane harmonic wave in rotating media with fractional order heat transfer vol.9, pp.4, 2019, https://doi.org/10.12989/amr.2020.9.4.289
- Plane wave in non-local semiconducting rotating media with Hall effect and three-phase lag fractional order heat transfer vol.16, pp.1, 2019, https://doi.org/10.1186/s40712-021-00137-3