DOI QR코드

DOI QR Code

Multivariate design estimations under copulas constructions. Stage-1: Parametrical density constructions for defining flood marginals for the Kelantan River basin, Malaysia

  • Received : 2019.02.09
  • Accepted : 2019.07.22
  • Published : 2019.09.25

Abstract

Comprehensive understanding of the flood risk assessments via frequency analysis often demands multivariate designs under the different notations of return periods. Flood is a tri-variate random consequence, which often pointing the unreliability of univariate return period and demands for the joint dependency construction by accounting its multiple intercorrelated flood vectors i.e., flood peak, volume & durations. Selecting the most parsimonious probability functions for demonstrating univariate flood marginals distributions is often a mandatory pre-processing desire before the establishment of joint dependency. Especially under copulas methodology, which often allows the practitioner to model univariate marginals separately from their joint constructions. Parametric density approximations often hypothesized that the random samples must follow some specific or predefine probability density functions, which usually defines different estimates especially in the tail of distributions. Concentrations of the upper tail often seem interesting during flood modelling also, no evidence exhibited in favours of any fixed distributions, which often characterized through the trial and error procedure based on goodness-of-fit measures. On another side, model performance evaluations and selections of best-fitted distributions often demand precise investigations via comparing the relative sample reproducing capabilities otherwise, inconsistencies might reveal uncertainty. Also, the strength & weakness of different fitness statistics usually vary and having different extent during demonstrating gaps and dispensary among fitted distributions. In this literature, selections efforts of marginal distributions of flood variables are incorporated by employing an interactive set of parametric functions for event-based (or Block annual maxima) samples over the 50-years continuously-distributed streamflow characteristics for the Kelantan River basin at Gulliemard Bridge, Malaysia. Model fitness criteria are examined based on the degree of agreements between cumulative empirical and theoretical probabilities. Both the analytical as well as graphically visual inspections are undertaken to strengthen much decisive evidence in favour of best-fitted probability density.

Keywords

References

  1. Adamowski, K. (1985), "Nonparametric kernel estimation of flood frequencies", Water Resour. Res., 21(11), 1885-1890. https://doi.org/10.1029/WR021i011p01585
  2. Abdulkareem, J.H. and Sulaiman, W.N.A. (2015). "Trend Analysis of Precipitation Data in Flood Source Areas of Kelantan River Basin, Malaysia", Proceedings of the 3rd International Conference in Water Resources, ICWR-2015.
  3. Alam, A., Bhat, M.S., Hakeem, F., Ahmad, B., Ahmad, S. and Sheikh, A.H. (2018), "Flood risk assessment of Srinagar city in Jammu and Kashmir, India". Int. J. Disaster Resilience Built Environ., 2, 9. https://doi.org/10.1108/IJDRBE-02-2017-0012.
  4. Arshad, M., Rasool, M.T. and Ahmad, M.I. (2003), "Anderson Darling and modified Anderson Darling Tests for generalized Pareto distribution", Pakistan J. Appl. Sci., 3(2), 85-88.
  5. Anderson, T.W. and Darling, D.A. (1954), "A test of goodness of fit", J. Am. Stat. Assoc., 49(268), 765-769. https://doi.org/10.1080/01621459.1954.10501232
  6. Adamowski, K. (1989), "A monte Carlo comparison of parametric and nonparametric estimations of flood frequencies", J. Hydrol., 108, 295-308. https://doi.org/10.1016/0022-1694(89)90290-4
  7. Alamgir, M., Ismail, T. and Noor, M. (2018). "Bivariate frequency analysis of flood variables using copula in Kelantan River Basin", Malaysian J. Civil Eng., 30(3), 395-404.
  8. Arnold, J.G. and Allen, P.M. (1999), "Automated methods for estimating baseflow and ground water recharge from streamflow records", J. Am. Water Resour. Assoc., 35, 411-424. https://doi.org/10.1111/j.1752-1688.1999.tb03599.x
  9. Alexandersson, H. (1986), "A homogeneity test applied to precipitation test", J. Climatol., 6, 661-675. https://doi.org/10.1002/joc.3370060607
  10. Adamowski, K. (1996), "Nonparametric estimations of low-flow frequencies", J Hydraul Eng., 122(1), 46-49. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:1(46)
  11. Arora, K. and Singh, V.P. (1988), "On the method of maximum likelihood estimation for the log-pearson type 3 distribution", Stoch. Hydrol. Hydraul., 2(2), 155-160. https://doi.org/10.1007/BF01543458
  12. Ashkar, F. and Mahdi, S. (2003), "Comparison of two fitting methods for the log-logistic distribution", Water Resour. Res., 39(8), 1217, Doi 0.1029/2002WR001685. https://doi.org/10.1029/2002WR001685
  13. Adnan, N.A. and Atkinson, P.M. (2011), "Exploring the impact of climate and land use changes on streamflow trends in a monsoon catchment", Int. J. Climatol., 31, 815-831. https://doi.org/10.1002/joc.2112
  14. Akaike, H. (1974). "A new look at the statistical model identification", IEEE T. Automat. Contr., 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705
  15. Bobee, B. (1974), "The log Pearson type 3 distribution and its application in hydrology", Water Resour. Res., 11(5), October 1975, 681-689. https://doi.org/10.1029/WR011i005p00681
  16. Bobee, B. and Rasmussen, P.F. (1994), "Statistical analysis of annual flood series", (Eds., Menon, J.), Trend in Hydrology, 1. Council of Scientific Research Integration, India, 117-135.
  17. Bras, R.L. (1990), Hydrology: an introduction to hydrologic science, Addison-Wesley, 0201059223, 9780201059229.
  18. Bennett, N.D., Croke, B.F.W., Guarios, G., Guillaume, J.H.A., Hamilton, S.H., Jakeman, A.J., Marsili-Libeli, S., Newham, L.T.H., Norton, J.P., Perrin, C., Pierce, S.A., Robson, B., Seppelt, R., Voinov, A.A. and Fath, B.D. (2013), "Characterising performance of environmental models", Environ, Model. Softw., 40, 1-20. https://doi.org/10.1016/j.envsoft.2012.09.011
  19. Bowman, A. and Azzalini, A. (1997), Applied smoothing techniques for data analysis: the Kernel approach with S-plus illustrations, New York: Oxford University Press.
  20. Brunner, M.I., Favre, A. and Seibert, J. (2016), "Bivariate return periods and their importance for flood peak and volume estimations", Wiley Interdisciplinary Reviews: Water, 3(6), 819-833. DOI: https://doi.org/10.1002/wat2.1173.
  21. Boughton, W., Srikanthan, S. and Weinmann, E. (2002), "Benchmarking a new design flood estimation system", Aust. J. Water Resour., 6(1), 45-52. https://doi.org/10.1080/13241583.2002.11465209
  22. Blazkova, S. and Beven, K. (2004), "Flood frequency estimation by continuous simulation of subcatchmnets rainfalls and discharges with the aim of improving dam safety assessments in a large basin in the Czech Republic", J. Hydrol., 292, 153-172. https://doi.org/10.1016/j.jhydrol.2003.12.025
  23. Burnham, K.P. and Anderson, D.R. (2004), Model Selection and Multimodel inference: A Practical Information-Theoretic Approach (2nd Ed.), Springer-Verlag, ISBN 0-387-9536-7.
  24. Burr, I.W. (1942), "Cumulative frequency functions", Ann. Math. Statist., 13, 215-232. https://doi.org/10.1214/aoms/1177731607
  25. Burnham, K.P. and Anderson, D.R. (2002), Model Selection and Inference: A Practical Information-Theoretic Approach, 2nd Ed., Springer-Verlag, New York. http://dx.doi.org/10.1007/b97636.
  26. Beirlant, J., Teugels. J.L. and Vynckier, P. (1996), Practical analysis of Extreme values, Leuven University Press, Leuven, Belgium.
  27. Benth F.E. and Saltyte-Benth J. (2005), "Stochastic modelling of temperature variations with a view towards weather derivatives", Appl. Math. Finance, 12(1), 53-85. https://doi.org/10.1080/1350486042000271638
  28. Bowman, A.W. (1984), "An alternative method of cross-validations for the smoothing of kernel density estimates", Biometrika, 71, 353-360. https://doi.org/10.1093/biomet/71.2.353
  29. Bain, L. and Engelhardt, M. (1991), Introduction to Probability and Mathematical Statistics, Duxbury Press.
  30. Buishand, T.A. (1982), "Some methods for testing the homogeneity of rainfall records", J. Hydrol., 58(1-2), 11-12. https://doi.org/10.1016/0022-1694(82)90066-X
  31. Bedford, T. and Cooke, R.M. (2002), "Vines- a new graphical model for dependent random variables", Ann. Stat., 30(4), 1031-1068. https://doi.org/10.1214/aos/1031689016
  32. Claeskens, G. and Hjort, N.L. (2008), Model Selection and Model Averaging, Cambridge University Press, 2008.
  33. Calver, A. and Lamb, R. (1995), "Flood frequency estimation using continuous rainfall-runoff modelling", Phys. Chem. Earth., 20, 479-483. https://doi.org/10.1016/S0079-1946(96)00010-9
  34. Cunnane, C. (1988), "Methods and merits of regional flood frequency analysis", J. Hydrol., 100, 269-290. https://doi.org/10.1016/0022-1694(88)90188-6
  35. Cunnane, C. (1989), "Statistical distributions for flood frequency analysis", Operational Hydrology Report no. 33, WMO no. 718, World Meteorological Organization, Geneva, Switzerland.
  36. Choulakian, V., Jabi, EI. N. and Issa, M. (1990), "On the distribution of flood volume in partial duration series analyses of flood phenomenon", Stoch. Hydrol. Hydraul., 4(3), 217-226. https://doi.org/10.1007/BF01543085
  37. Chai, T. and Draxler R.R. (2014), "Root mean square error (RMSE) or mean absolute error (MAE)?- Arguments against avoiding RMSE in the literature", Geoscience Model Development, 7, 1247-1250. https://doi.org/10.5194/gmd-7-1247-2014
  38. Cunnane, C. (1978), "Unbiased plotting positions- A review", J. Hydrol., 37(3), 205-222. https://doi.org/10.1016/0022-1694(78)90017-3
  39. Cong, R.G. and Brady, M. (2012), "The interdependence between Rainfall and Temperature: copula Analyses", The Scientific World Journal, Vol 2011, Article ID 405675.
  40. Conover, W.J. (1999), Practical Nonparametric Statistics, John Wiley e Sons, New York.
  41. Cugerone, K. and De Michele C. (2005), "Johnson SB as general functional form for raindrop size distribution", Water Resour. Res., 51(8), 6276-6289. http://dx.doi.org/10.1002/2014WR016484.
  42. Chan, N.W. (1995), "Flood disaster management in Malaysia: an evaluation of the effectiveness of government resettlement scheme", J. Disaster Prevent. Management, 4, 22-29. https://doi.org/10.1108/09653569510093405
  43. Chow, V.T., Maidment D.R. and Mays, L.W. (1988), Applied Hydrology. McGraw Hill, New York.
  44. Chen, L., Singh, V.P. and Xiong, F. (2017), "An entropy-based generalized gamma distribution for flood frequency analysis", Entropy, 19, 239. https://doi.org/10.3390/e19060239
  45. Chambers, J.M, Cleveland, W.S., Kleiner, B. and Tukey, P.A. (1983), Graphical Methods for Data Analysis, Wadsworth & Brooks/Cole, Belmont, CA.
  46. Cohn, T.A., Lane, W.L. and Baier W.G. (1997), "An algorithm for computing moments-based flood quantile estimates when historical flood information is available", Water Resour. Res., 33(9), 2089-2096. https://doi.org/10.1029/97WR01640
  47. Coles, S. (2001), An introduction statistical modelling of extreme values, Springer, ISBN 1-85233-459-2.
  48. Choulakian, V., Jabi, EI. N, and Issa, M. (1990), "On the distribution of flood volume in partial duration series analyses of flood phenomenon", Stoch. Hydrol. Hydraul., 4(3), 217-22. https://doi.org/10.1007/BF01543085
  49. Correia, F.N. (1987), "Multivariate partial duration series in flood risk analysis", (Ed., Singh, V.P.), Hydrologic Frequency Modelling. Reidel, Dordrecht, The Netherlands, 541-554
  50. Durrans, S.R., Eiffe, M.A., Thomas, Jr. W.O. and Goranflo, H.M. (2003), "Joint seasonal/ annual flood frequency analysis", J. Hydrol. Eng., 8, 181-189. https://doi.org/10.1061/(ASCE)1084-0699(2003)8:4(181)
  51. Duins, R.P.W. (1976), "On the choice of smoothing parameters of Parzen estimators pf probability density functions", IEEE T. Comput., 25, 1175-1179.
  52. Duong, T. and Hazelton, M.L. (2003), "Plug-in bandwidth selectors for bivariate kernel density estimations", J. Nonparametr. Stat, 15, 17-30. https://doi.org/10.1080/10485250306039
  53. Dooge, J.C.E. (1986)," Looking for hydrologic laws", Water Resour. Res, 22(9), 465-485.
  54. De Michele, C. and Salvadori, G. (2003), "A generalized Pareto intensity-duration model of storm rainfall exploiting 2-copulas", J. Geophys. Res., 108(2), 4067. Doi: 10.1029/2002JD002534.
  55. Daneshkhan, A., Remesan R., Omid C. and Holman, I.P. (2016), "Probabilistic modelling of flood characteristics with parametric and minimum information pair-copula model", J. Hydrol., 540, 469-487. https://doi.org/10.1016/j.jhydrol.2016.06.044
  56. De Michele, C., Salvadori, G., Canossi, M., Petaccia A. and Rosso, R. (2005), "Bivariate statistical approach to check the adequacy of dam spillway", J. Hydrol. Eng., 10(1), 50-57. https://doi.org/10.1061/(ASCE)1084-0699(2005)10:1(50)
  57. DID (Drainage and Irrigation Department Malaysia). (2003), "Annual flood report of DID for Peninsular Malaysia. Unpublished report", DID, Kuala Lumpur.
  58. DID (Drainage and Irrigation Department Malaysia). (2004), "Annual flood report of DID for Peninsular Malaysia", Unpublished report, DID, Kuala Lumpur.
  59. DID (Drainage and Irrigation Department). (2000), "Annual flood report of DID for Peninsular Malaysia", Unpublished report. DID, Kuala Lumpur.
  60. D'Adderio, L.P., Cugerone, K., Porcu, F., De Michele, C. and Tokay, A. (2016), "Capabilities of the Johnson SB distribution in estimating rain variables", Adv. Water Resour., 97, 241-250, https://doi.org/10.1016/j.advwatres.2016.09.017
  61. Dupuis, D.J. (2007), "Using copulas in hydrology: benefits, cautions, and issues", J. Hydrol. Eng., 12(4), 381-393. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(381)
  62. Dufour J.M., Farhat, A., Gardiol, L. and Khalaf, L. (1998), "Simulation-based Finite Sample Normality Tests in Linear Regressions", Econometrics J., 1, 154-173. https://doi.org/10.1111/1368-423X.11009
  63. Efromovich, S. (1999), Nonparametric curve estimation: methods, theory and applications. New York: Springer-Verlag.
  64. Eckhardt, K. (2005), "How to construct recursive digital filters for baseflow separation", Hydrol. Process., 19, 507-515. https://doi.org/10.1002/hyp.5675
  65. Ekanayake, S.T. and Cruise, J.F. (1993). "Comparison of Weibull- and exponential-based partial duration stochastic flood models", Stoch. Hydrol. Hydraul., 7, 283-297. https://doi.org/10.1007/BF01581616
  66. Eckhardt, K. (2004), "How to construct recursive digital filters for baseflow separation", Hydrol. Process, 19(2), https://doi.org/10.1002/hyp.5675
  67. Fan, L. and Zheng, Q. (2016), "Probabilistic modelling of flood events using the entropy copula", Adv. Water Resour., 97, 233-240. https://doi.org/10.1016/j.advwatres.2016.09.016
  68. Favre, A.C., Adlouni, S.E., Perreault, L., Thiemonge, N. and Bobee, B. (2004), "Multivariate hydrological frequency analysis using copulas", Water Resour. Res., 40. Doi: 10.1029/2003WR002456.
  69. Farrel, P.J. and Stewart, K.R. (2006), "Comprehensive study of tests for normality and symmetry: Extending the Spiegelhalter test", J. Stat. Comput. Simul., 76, 803-816. https://doi.org/10.1080/10629360500109023
  70. Fan, Y.R., Huang, W.W., Huang, G.H., Huang, K., Li, Y.P. and Kong, X.M. (2015), "Bivariate Hydrological risk analysis based on coupled entropy- copula method for the Xiang xi River in the Three Gorges Reservoir area", Theor. Appl. Climatol., China, Doi: 10.1007/s00704-015-1505-z.
  71. Griffis, V.W. and Stedinger, J.R. (2007), "Log-Pearson type 3 distribution and its application in flood frequency analysis. I: Distribution characteristics", J. Hydrol. Eng., 12(5), 482-491. doi: .10.1061/(ASCE)1084-0699(2007)12:5(482)
  72. Gupta, H.V., Kling, H., Yilmaz, K.K. and Martinez, G.F. (2009), "Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling", J. Hydrol., 377(2), 80e91. https://doi.org/10.1016/j.jhydrol.2009.08.003
  73. Gupta, H.V., Sorooshian, S. and Yapo, P.O. (1999), "Status of automatic calibration for hydrologic models: Comparison with multilevel expert caliberation", J. Hydrol.Eng., 4(2), 135-143. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135)
  74. Goel, N.K., Seth, S.M. and Chandra, S. (1998), "Multivariate modelling of flood flows", J. Hydraul. Eng., 124(2), 146-155. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:2(146)
  75. Grimaldi, S., Baets B.D. and Verhost, N.E.C. (2013), "Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation", Hydrol.Earth Syst. Sci., 1.
  76. Graler, B., Berg, M.J.V., Vandenberg, S., Petroselli, A., Grimaldi, S., Baets B.D. and Verhost, N.E.C. (2013), "Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation", Hydrol.Earth Syst. Sci., 17, 1281-1296. https://doi.org/10.5194/hess-17-1281-2013
  77. Grimaldi, S. and Serinaldi, F. (2006), "Asymmetric copula in multivariate flood frequency analysis", Adv. ater Resour., 29, 1155-1167. https://doi.org/10.1016/j.advwatres.2005.09.005
  78. Gaal, L., Szolgay, J., Kohnova, S., Hlavcova, K., Parajka, J., Viglione, A. and Bloschl, G. (2015). "Dependence between flood peaks and volumes: a case study on climate and hydrological controls", Hydrol. Sci. J., 60(6), 968-984 https://doi.org/10.1080/02626667.2014.951361
  79. Genest, C., Favre A.C., Beliveau, J. and Jacques C. (2007), "Meta-elliptical copulas and their use in frequency analysis of multivariate ydrological data", Water Resour. Res., 43, W09401, doi: 10.1029/2006WR005275.
  80. Gupta, H.V., Sorooshian, S. and Yapo, P.O. (1999), "Status of automatic calibration for hydrologic models: Comparison with multilevel expert caliberation", J. Hydrol. Eng., 4(2), 135-143. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135)
  81. Gringorten, I.I. (1963), "A plotting rule of extreme probability paper", J. Geophys. Res., 68(3), 813-814 https://doi.org/10.1029/JZ068i003p00813
  82. Guo, S.L. (1990), "Unbiased plotting position formulae for historical floods", J. Hydrol., 121(1-4), 45-61. https://doi.org/10.1016/0022-1694(90)90224-L
  83. Genest, C. and Rivest, L.P. (1993), "Statistical inference procedures for bivariate Archimedean copulas", J. Am. Stat. Assoc., 88(423), 1034-1043. https://doi.org/10.1080/01621459.1993.10476372
  84. Gonzales, A.L., Nonner J., Heijkers, J. and Uhlenbrook S. (2009), "Comparison of different base flow separation methods in a lowland catchment", Hydrol. Earth Syst. Sci., 13, 2055-2068 https://doi.org/10.5194/hess-13-2055-2009
  85. Haggag, M.M.M. (2014), "New Criteria of Model selection and model averaging in linear regression models", Am. J. Theor. Appl. Stat., 3(5), 148-166. https://doi.org/10.11648/j.ajtas.20140305.15
  86. Haddad, K. and Rahman, A. (2008), "Investigation on at-site flood frequency analysis in south-east Australia", Journal - The Institution of Engineers, Malaysia , 69(3).
  87. Hannan, E.J. and Quinn, B.G. (1979), "The determination of the order of an autoregression", J. R. Stat. Soc. Series B Stat. Methodol., 41, 190-195.
  88. Hosking, J.R.M. and Walis, J.R. (1987), "Parameter and quantile estimations for the generalized Pareto distributions", Technometrics, 29(3), 339-349. https://doi.org/10.1080/00401706.1987.10488243
  89. Hosking, J.R.M., Wallis, J.R. and Wood, E.F. (1985), "Estimation of the general extreme value distribution be the method of probability weighted moments", Technometrics, 27(3), 251-261. https://doi.org/10.1080/00401706.1985.10488049
  90. Hameed, K.H. (2008), "Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis", J. Hydrol., 349(3-4), 350-363. https://doi.org/10.1016/j.jhydrol.2007.11.009
  91. Hosking, J.M.R. and Wallis, J.R. (1997), Regional Frequency Analysis, Cambridge University Press. Cambridge, UK.
  92. Hamid, A.T, Sharif, M. and Archer, D. (2014), "Analysis of Temperature Trends in Satluj River Basin, India", J. Earth Sci. Clim. Change, 5, 222. Doi: 10.4172/2157-7617.1000222
  93. Hall, M.J. (1984), Urban Hydrology. Barking, UK: Elsevier, 299.
  94. Haktanir, T. (1992), "Comparison of various flood frequency distributions using annual flood peaks data of rivers in Anatolia", J. Hydrol., 136, 1-31. https://doi.org/10.1016/0022-1694(92)90002-D
  95. Heo, J., Salas J.D. and Boes D.C. (2001), "Regional Food frequency analysis based on a Weibull model: Part 2. Simulations and applications", J. Hydrol., 242, 171-182. https://doi.org/10.1016/S0022-1694(00)00335-8
  96. Haktanir, T. and Horlacher, H.B. (1993), "Evaluation of various distributions for flood frequency analysis", Hydrol. Sci., 38,1-2, 15-32. https://doi.org/10.1080/02626669309492637
  97. Jain, D. and Singh, V. P. (1987), "Comparison of some flood frequency distributions using empirical data", Proceedings of the International Symp. on Flood Frequency and Risk Analyses, Hydrologie Frequency Modelling, D. Reidel Publ. Co., Dordrecht, The Netherlands.
  98. Jamaliah, J. (2007), "Emerging Trends of Urbanization in Malaysia [online]", Acessed from: http://www.statistics.gov.my/eng/images/stories/files/journalDOSM/V104ArticleJamaliah.pdf. [Acessed 20 January 2009].
  99. Jones, M.C., Marron, J.S and Sheather, S.J. (1996), "A brief survey of bandwidth selection for density estimation", J. Am. Stat. Assoc., 91, 401-407. https://doi.org/10.1080/01621459.1996.10476701
  100. Jaiswal, R.K., Lohani, A.K. and Tiwari, H.L. (2015), "Statistical analysis for change detection and trend assessment in climatological parameters", Environ. Process, 2, 729-749. DOI 10.1007/s40710-015-0105-3
  101. Johnson, N.L. (1994), Continuous univariate distribution, Wiley New York, Vol 1.
  102. Kullback, S. and Leibler, R.A. (1951), "On information and sufficiency", Anna. Math. Stat., 22, 79-86. https://doi.org/10.1214/aoms/1177729694
  103. Kendall, M. G. (1975), Rank Correlation Methods, 4th ed., Charles Griffin: London, 1975.
  104. Kite, G.W. and Stuart, A. (1977), Frequency and risk analysis in hydrology, Water Resources pulic. Fort Collins, Co.
  105. Katz, R.W., Parlang, M.B. and Naveau, P. (2002), "Statistics of extremes in hydrology", Adv. Water Resour., 25, 1287-1304. https://doi.org/10.1016/S0309-1708(02)00056-8
  106. Karim, M.A. and Chowdhury, J.U. (1995), "A comparison of four distributions used in flood frequency analysis in Bangladesh", Hydrol. Sci. J., 40(1), 55-66. https://doi.org/10.1080/02626669509491390
  107. Kuchment, L.S. and Gelfan, A.N. (2011), "Assessment of extreme flood characteristics based on a dynamic-stochastic model of runoff generation and the probable maximum discharge", Risk in Water Resources Management (Proceedings of Symposium H03 held during IUGG2011 in Melbourne, Australia, July 2011) (IAHS Publ. 347, 2011).
  108. Kang, H.O. and Yusof, F. (2012), "Homogeneity tests on daily rainfall series", Int. J. Contemp. Math. Sci., 7, (1), 9-22
  109. Khaliq, M., Ouarda, T., Ondo, J.C., Gachon, P. and Bobee, B. (2006), "Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: a review", J. Hydrol., 329(3-4), 534-552 https://doi.org/10.1016/j.jhydrol.2006.03.004
  110. Kao, S. and Govindaraju, R. (2008), "Trivariate statistical analysis of extreme rainfall events via the Plackett family copulas", Water Resour. Res., 44, 10.1029/2007WR006261.
  111. Krstanovic, P.F. and Singh, V.P. (1987), "A multivariate stochastic flood analysis using entropy", (Ed., Singh, V.P.). Hydrologic Frequency Modelling, Reidel, Dordrecht, 515-539.
  112. Kim, T.W., Valdes J.B. and Yoo C. (2003), "Nonparametric approach for estimating return periods of droughts in arid regions", J. Hydrol. Eng. - ASCE, 8(5), 237-246. https://doi.org/10.1061/(ASCE)1084-0699(2003)8:5(237)
  113. Kahya, E. and Kalayci, S. (2004), "Trend analysis of streamflow in Turkey", J. Hydrol., 289, 128-144, DOI: 10.1016/j.jhydrol.2003.11.006.
  114. Kim, T.W., Valdes, J.B. and Yoo, C. (2006), "Nonparametric approach for bivariate drought characterisation using Palmer drought index", J. Hydrol. Eng., 11(2), 134-143. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:2(134)
  115. Ghosh, S. and Mujumdar, P.P. (2007), "Nonparametric methods for modeling GCM and scenario uncertainty in drought assessments", Water Resour. Res, 43, W07405. Doi: 10.1029/2006WR005351.
  116. Kong, X.M., Huang, G.H., Fan, Y.R. and Li, Y.P. (2015), "Maximum entropy-Gumbel-Hougaard copula method for simulation of monthly streamflow in Xiangxi river, China", Stoch. Environ. Res. Risk A, 29, 833-846. https://doi.org/10.1007/s00477-014-0978-0
  117. Keshtkaran, P., Sabzevari, T. and Torabihaghighi, A. (2011), "Regional Flood Frequency Analysis of Fars Rivers in Iran Using New Statistical Distributions (Case Study for Ghareaghaj and Kor Rivers)", Geophys. Res. Abstracts, 13,161, 2011.
  118. Karmakar, S. and Simonovic, S.P. (2008), "Bivariate flood frequency analysis. Part-1: Determination of marginal by parametric and non-parametric techniques", J. Flood Risk Manage., 1, 190-200. https://doi.org/10.1111/j.1753-318X.2008.00022.x
  119. Karmakar, S. and Simonovic, S.P. (2009), "Bivariate flood frequency analysis. Part-2: A copula-based approach with mixed marginal distributions", J. Flood Risk Manage., 2(1), 1-13. https://doi.org/10.1111/j.1753-318X.2008.01016.x
  120. Lim, Y.H. and Lye, L.M. (2003), "Regional flood estimation for ungauged basins in Sarawak, Malaysia", Hydrological Sciences-Journal-des Sciences Hydrologiques, 48(1).
  121. Ladson, A.R., Brown, R., Neal, B. and Nathan, R. (2013), "A standard approach to baseflow separation using the Lyne and Hollick filter", Aust. J. Water Resour., 17(1), 25-34.
  122. Lim, K.J., Engel, B.A., Tang, Z., Choi, J., Kim, K., Muthukrishnan S. and Tripathy, D. (2005), "Automated web GIS based hydrograph analysis tool, WHAT", J. Am. Water Resour. Assoc., 1407-1416. https://doi.org/10.1111/j.1752-1688.2005.tb03808.x
  123. Lawrence, D., Paquet, E., Gailhard, J. and Fleig, A.K. (2014), "Stochastic semi-continuous simulations for extreme flood estimations in catchments with combined rainfall-snowmelt flood regimes", Nat. Hazard Earth Sys., 14, 1283-1298. https://doi.org/10.5194/nhess-14-1283-2014
  124. Liu, Q. and Cui, B. (2008), "Spatial and temporal variability of annual precipitation during 1961-2006 in Yellow River Basin, China", J. Hydrol, 361(3-4), 330-338. https://doi.org/10.1016/j.jhydrol.2008.08.002
  125. Lall, U. (1995), "Recent advances in nonparametric function estimation: Hydrological applications", Rev. Geophys., 33(1), 1093-1102. https://doi.org/10.1029/95RG00343
  126. Lall, U., Moon, Y.I. and Khalil. A.F. (1993), "Kernel flood frequency estimators: Bandwidth selection and kernel choice", Water Resour. Res., 29(4), 1003-1015. https://doi.org/10.1029/92WR02466
  127. Ljung, G.M. and Box, G.E.P. (1978), "On a measure of lack of fit in time series models", Biometrika, 65, 297-303. https://doi.org/10.1093/biomet/65.2.297
  128. Lyne, V. and Hollick, M. (1979), "Stochastic time variable rainfall-runoff modelling", Proceedings of the Hydrology and Water Resources Symposium, Perth, 10-12 September, Institution of Engineers National Conference Publication, No. 79/10, 89-92
  129. Lall, U., Rajagopalan, B and Tarboton, D.G. (1996), "A nonparametric wet/dry spell model for resampling daily precipitation", Water Resour. Res., 32(9), 2803-2823. https://doi.org/10.1029/96WR00565
  130. Legates, D.R. and McCabe, G.J. (1999), "Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation", Water Resour. Res., 35(1), 233-241. https://doi.org/10.1029/1998WR900018
  131. Madsen, H., Rasmussen, P.F. and Rosbjerg, D. (1997), "Comparison of annual maximum series and partial duration series methods for modelling extreme hydrologic events. 1. At-site modelling", Water Resour. Res., 33(4), 747-757. https://doi.org/10.1029/96WR03848
  132. Modarres, R. and Silva, V.P.R. (2007), "Rainfall trends in arid and semi-arid regions of Iran", J. Arid Environ., 70, 344-355. https://doi.org/10.1016/j.jaridenv.2006.12.024
  133. Mathwave Technologies: http://www.mathwave.com/help/easyfit/html/analyses/graphs/difference.html.
  134. Martins, E.S. and Stedinger, J.R. (2000), "Generalized maximum likehood GEV quantiles estimators for hydrologic data", Water Resour. Res., 36, 747-744.
  135. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D. and Veith, T.L. (2007), "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations", Transactions of the ASABE, 50(3), 885- 900. https://doi.org/10.13031/2013.23153
  136. MMD. (2007), "Malaysian Meteorological Department (MMD). Report on Heavy Rainfall that Caused Floods in Kelantan and Terengganu", Unpublished report. MMD: Kuala Lumpur.
  137. Madadgar, S. and Moradkhani, H. (2013), "Drought analysis under climate change using copula", J. Hydrol. Eng.- ASCE, 18, 746-759. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000532
  138. Markiewicz, I., Strupczewski, W.G., Bogdanowicz, E. and Kochanek, K. (2015), "Generalized exponential distribution in flood frequency analysis for Polish rivers", PLOS ONE, DOI:10.1371/journal.pone.0143965
  139. Morrison, J.E. and Smith, J.A. (2002), "Stochastic modeling of flood peaks using the generalized extreme value (GEV) distributions", Water Resour. Res., 38 (12), 1302, DOI: 10.1029/2001WR000502.
  140. Mann, H.B. (1945), "Nonparametric test against trend", Econometrics, 13, 245-259. https://doi.org/10.2307/1907187
  141. McMahon, T.A. and Srikanthan, R. (1981), "Log-Pearson type 3 distribution - is it applicable to flood frequency analysis of Australian streams?", J. Hydrol., 52, 139-147. https://doi.org/10.1016/0022-1694(81)90100-1
  142. Mirabbasi, R., Kakheri-Fard, A. and Dinpashoh, Y. (2012), "Bivariate drought frequency analysis using the copula method", Theor . Appl. Climatol., 108, 191-206. https://doi.org/10.1007/s00704-011-0524-7
  143. Nelsen, R.B. (2006), An introduction to copulas, Springer, New York.
  144. Nashwan, M.S., Ismail, T. and Ahmed, K. (2018). "Flood susceptibility assessment in Kelantan river basin using copula", Int. J. Eng. Technol., 7(2), 584-590. https://doi.org/10.14419/ijet.v7i2.10447
  145. Nathan, R.J. and McMahon, T.A. (1990), "Evaluation of automated techniques for base flow and recession analysis", Water Resour. Res., 26, 1465-1473. https://doi.org/10.1029/WR026i007p01465
  146. Nadarajah, S. and Shiau, J. (2005), "Analysis of extreme flood events for the Pachang River, Taiwan", Water Resour. Manag., 19, 363-375. https://doi.org/10.1007/s11269-005-2073-2
  147. Nash, J. and Sutcliffe, J. (1970), "River flow forecasting through conceptual models part i e a discussion of principles", J. Hydrol., 10(3), 282e290. https://doi.org/10.1016/0022-1694(70)90255-6
  148. Owen, C.E.B. (2008), "Parameter Estimation for the Beta Distribution", All Thesis and Disertation. 1614. https://scholarsarchive.byu.edu/etd/1614.
  149. O'Connor, P.D.T. and Kleyner, A. (2012), Practical Reliability Engineering, Fifth Edition, John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
  150. Papaioannou, G., Kohnova, S., Bacigal, T., Szolgay, J., Hlavcova, K. and Loukas, A. (2016), "Joint modelling of flood peaks and volumes: A copula application for the Danube River", J. Hydrol. Hydromech., 64(4), 382-392. https://doi.org/10.1515/johh-2016-0049
  151. Poulin, A., Huard, D., Favre, A.C. and Pugin, S. (2007), "Importance of tail dependence in bivariate frequency analysis", J. Hydrol. Eng., 12(4), 394-403. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(394)
  152. Pettitt ,A.N. (1979), "A non-parametric approach to the change-point problem", Appl. Statist., 28, 126-135 https://doi.org/10.2307/2346729
  153. Rao, D.V. (1980), "Log Pearson Type 3 Distribution: A Generalized Evaluation", J. Hydraulic Div. - ASCE, 106(5), 853-872. https://doi.org/10.1061/JYCEAJ.0005428
  154. Razawi, S. and Vogel, R. (2018), "Pre-whitening of hydroclimatic time series? Implications for inferred change and variability across time scales", J. Hydrol., 557(2018), 109-115. https://doi.org/10.1016/j.jhydrol.2017.11.053
  155. Reddy, M.J. and Ganguli, P. (2012b), "Probabilistic assessments of flood risks using trivariate copulas", Theor. Appl. Climatol., 111, 341-360. https://doi.org/10.1007/s00704-012-0664-4
  156. Requena, A., Flores, I., Mediero, L. and Garrote, L. (2016), "Extension of observed flood series by combining a distributed hydro-meteorological model and a copula-based model", Stoch. Environ. Res. Risk Assess., 30, 1363-1378. doi: https://doi.org/10.1007/s00477-015-1138-x.
  157. Rao, A.R. and Hameed, K.H. (2000), Flood frequency analysis, CRC Press, Boca Raton, Fla.
  158. Rauf, U.F.A. and Zeephongsekul, P. (2014), "Copula based analysis of rainfall severity and duration: a case study", Theor. Appl. Climatol., 115(1-2), 153-166. https://doi.org/10.1007/s00704-013-0877-1
  159. Rossi, F., Fiorentino, M. and Versaece, P. (1984), "Two component extreme value distribution for flood frequency analysis", Water Resour. Res., 20(7), 847-856. https://doi.org/10.1029/WR020i007p00847
  160. Reddy, M.J. and Ganguli, P. (2012a), "Bivariate Flood Frequency Analysis of Upper Godavari River Flows Using Archimedean Copulas", Water Resour. Manage., DOI. 10.1007/s11269-012- 0124-z.
  161. Scholz, F.W. and Stephens, M.A. (1987), "K-sample Anderson-Darling tests", J. Am Stat. Assoc., 82(399): 918-924. https://doi.org/10.2307/2288805
  162. Singh, V.P. and Singh, K. (1988), "Parameter Estimation for Log-Pearson Type III Distribution by POME", J. Hydraul. Eng.- ASCE, 114 (1), 112-122. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:1(112)
  163. Santhosh, D. and Srinivas, V.V. (2013), "Bivariate frequency analysis of flood using a diffusion kernel density estimators", Water Resour. Res., 49, 8328-8343. doi: 10.1002/2011WR0100777.
  164. Sharma, A. (2000), "Seasonal to interseasonal rainfall probabilistic forcasts for improved water supply management", J. Hydrol., 239, 249-258. https://doi.org/10.1016/S0022-1694(00)00348-6
  165. Saklar, A. (1959), "Functions de repartition n dimensions et leurs marges", Publ. Inst. Stat. Univ. Paris, 8, 229-231.
  166. Sevat, E., and Dezetter, A. (1991), "Selection of calibration objective functions in the context of rainfall-runoff modeling in a sudanese savannah area", Hydrol. Sci. J., 36(4), 307-330. https://doi.org/10.1080/02626669109492517
  167. Singh, V.P. (1998), "Log-Pearson Type III Distribution. In: Entropy-Based Parameter Estimation in Hydrology", Water Sci. Technol., 30. Springer, Dordrecht
  168. Salvadori, G., De Michele, C. and Durante, F. (2011), "Multivariate design via copulas", Hydrol. Earth. Syst. Sci. Discuss, 8(3), 5523-5558 https://doi.org/10.5194/hessd-8-5523-2011
  169. Serinaldi, F. and Grimaldi, S. (2007), "Fully nested 3-copula procedure and application on hydrological data", J. Hydrol. Eng., 12(4), 420-430. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(420)
  170. Salinas, J.L., Castellarin, A., Viglione, A., Kohnova, S. and Kjeldsen, T. (2014), "Regional parent flood frequency distributions in Europe - Part 1: Is the GEV model suitable as a pan-European parent?", Hydrol. Eart. Syst. Sci., 18, 4381-4389. https://doi.org/10.5194/hess-18-4381-2014
  171. Singh, K. and Singh, V.P. (1991), "Derivation of bivariate probability density functions with exponential marginals", Stochastic Hydrol. Hydraul., 5, 55-68. https://doi.org/10.1007/BF01544178
  172. Stedinger, J.R., Vogel, R.M. and Georgiou, E.F. (1993), Frequency analysis of extreme events, Chapter 18 In: Handbook of Hydrology, ed. D. R. Maidment. McGraw-Hill, New York, USA.
  173. Stedinger, J.R., Vogel, R.M. and Foufoula-Georgiou, E. (1992), Frequency analysis of extreme events, (Ed., Maidment, D.R.), Handbook of Hydrology, chap. 18: New York, McGraw-Hill.
  174. Silverman, B.W. (1986), Density Estimation for Statistics and Data Analysis, 1st edition, Chapman and Hall, London.
  175. Salvadori, G. (2004), "Bivariate return periods via-2 copulas", J. Roy. Stat. Soc. Ser. B, 1, 129-144.
  176. Shiau J.T. (2003), "Return period of bivariate distributed extreme hydrological events", Stoch. Environ. Res. Risk Assess. 17, 42-57. https://doi.org/10.1007/s00477-003-0125-9
  177. Shao. Q., Chen. Y.D. and Zhang, L. (2008), "An extension of three-parameter Burr III distribution for low-flow frequency analysis", Comput. Stat. Data Anal., 52, 1304-1314. https://doi.org/10.1016/j.csda.2007.06.014
  178. Seier, E. (2002), "Comparison of tests for univariate normality", lnter. Stat. Statistical J., 1, 1-17.
  179. Singh, R.S. (1977), "Applications of estimators of a density and its derivatives", J. R. Stat. Soc. Series B Stat. Methodol., 39(3), 357-363.
  180. Sraj, M., Bezak, N. and Brilly, M. (2014), "Bivariate flood frequency analysis using the copula function: a case study of the Litija station on the Sava River", Hydrol. Process., Doi:10.1002/hyp.10145.
  181. Singh, J., Knapp, H.V. and Demissie, M. (2004), "Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. ISWS CR 2004-08. Champaign, Ill.: Illinois State Water Survey. Available at: www.sws.uiuc.edu/pubdoc/CR/ ISWSCR2004-08.pdf. Accessed 8 September 2005.
  182. Singh, V.P., Guo, H. and Yu, F.X. (1993), "Parameter estimation for 3-parameter log-logistic distribution (LLD3) by Pome", Stoch. Hydrol. Hydraul., 7(3), 163-177. https://doi.org/10.1007/BF01585596
  183. Scott, D.W. (1992), Multivariate Density Estimations, Theory, Practice and Visualization, New York: Wiley.
  184. Salvadori, G. and De Michele, C. (2004), "Frequency analysis via copulas: theoretical aspects and applications to hydrological events", Water Resour. Res., 40, W12511, doi: 10.1029/2004WR003133.a
  185. Shoukri, M.M., Mian I. and Tracy, D.S. (1988), "Sampling properties of estimators of the log-logistic distribution with application to Canadian precipitation data", Can. J. Stat., 16, 223-236. https://doi.org/10.2307/3314729
  186. Schwarz, G.E. (1978), "Estimating the dimension of a model", Ann. Stat., 6(2), 461e464. https://doi.org/10.1214/aos/1176344136
  187. Shao, Q. (2004), "Notes on maximum likehood estimations for the three parameter Burr III distribution", Comput. Stat. Data Anal., 45, 675-687. https://doi.org/10.1016/S0167-9473(02)00367-5
  188. Sen, Z. (1999), "Simple risk calculations in dependent hydrological series", Hydrol. Sci. J., 44(6), 871- 878. https://doi.org/10.1080/02626669909492286
  189. Schwartz, S.C. (1967), "Estimations of probability density by an orthogonal series", Ann. Math. Stat., 38, 1261-1265. https://doi.org/10.1214/aoms/1177698795
  190. Serinaldi, F. (2015), "Dismissing return periods!", Stoch. Environ. Res. Risk Assess, 29(4), 1179-1189. https://doi.org/10.1007/s00477-014-0916-1
  191. Serinaldi, F. and Grimaldi, S. (2007), "Fully nested 3-copula procedure and application on hydrological data", J. Hydrol. Eng., 12(4), 420-430. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(420)
  192. Selaman, O.S., Said, S. and Putuhena, F.J. (2007), "Flood frequency analysis for Sarawak using Weibull, Gringorten and L-Moments formula", J. Institution of Engineers, 68, 1, 43-52.
  193. Shao, Q.X., Wong, H., Xia, J. and Ip, W.C. (2004), "Models for extreme using the extended three-parameter Burr XII system with application to flood frequency analysis", Hydrol. Sci. J., 49, 685-702. https://doi.org/10.1623/hysj.49.4.685.54425
  194. Tosunoglu, F. and Kisi, O. (2016), "Joint modelling of annual maximum drought severity and corresponding duration", J. Hydrol., (In Press). http://dx.doi.org/10.1016/j.jhydrol.2016.10.018.
  195. Toreti, A., Kuglitsch, F.G., Xoplaki, E., Della-Marta, P.M., Aguilar, E., Prohom, M. and Luterbacher, J. (2011), "A note on the use of the standard normal homogeneity test to detect inhomogeneities in climatic time series", Int. J. Climatol., 31, 630-632, DOI: 10.1002/joc.2088.
  196. Vogel, R.M., Thomas, W.O. and McMahon, T.A. (1993), "Flood-flow frequency model selection in the southwestern United States", Water Resour. Plan. Manage.- ASCE, 119(3), 353-366. https://doi.org/10.1061/(ASCE)0733-9496(1993)119:3(353)
  197. Veronika, B.M. and Halmova, D. (2014), "Joint modelling of flood peak discharges, volume and duration: a case study of the Danube River in Bratislava", J. Hydrol. Hydromech., 62(3), 186-196. https://doi.org/10.2478/johh-2014-0026
  198. Wang, F.K., Keats, J.B. and Zimmir, W.J. (1996), "Maximum likelihood estimation of the burr XII parameters with censored and uncensored data", Microelectron. Reliab., 36, 359-362. https://doi.org/10.1016/0026-2714(95)00077-1
  199. Wilems, P. (2005), "Bias analysis on the tail properties of flood frequency distributions", Proceedings of the EGU05 Conference (General Assembly of the European Geoscience Union), Vienna, 24-29 April 2005; Geophysical Research Abstract, vol 7, 10299.
  200. Willems, P. (1998), Hydrological applications of extreme value analysis, in hydrology in in a changing environment, (Eds., H, Wheater and C. Kirby), John Wiley & Sons, Chichester, vol.III, 15-25.
  201. Wallis, J.R. (1988), "Catastrophes, computing and containment: living in our restless habitat", Speculations in Science and Technology, 11(4), 295-315.
  202. Wooldridge, S., Kalma, J. and Kuczera, G. (2001), "Parameterisation of a simple semi-distributed model for assessing the impact of land-use on hydrologic response", J. Hydrol., 254, 16-32. https://doi.org/10.1016/S0022-1694(01)00489-9
  203. Wan, I. (1996), "Urban growth determinants for the state of Kelantano of the state's policy makers", Penerbitan Akademik Fakulti Kejuruteraan dan Sains Geoinformasi. Buletin Ukur, 7, 176-189.
  204. Willmott, C. and Matsuura, K. (2005), "Advantage of the Mean Absolute Error (MAE) OVER THE Root Mean Square Error (RMSE) in assessing average model performance", Clim. Res., 30, 79-82. https://doi.org/10.3354/cr030079
  205. Xu, Y., Huang, G. and Fan, Y. (2015), "Multivariate flood risk analysis for Wei River", Stoch. Environ. Res. Risk Assess., DOI 10.1007/s00477-015-1196-0.
  206. Xu, G.Y., Yan, G.X.Q. and Sun, X.G. (2005), "Interdecadal and interannual variation characteristics of rainfall in north china and its relation with the northern hemisphere atmospheric circulations", Chinese J. Geophys., (in Chinese), 48 (2), 511-518.
  207. Xu, C., Yin, J., Guo, S. and Hong, X. (2016), "Deriving design flood hydrograph based on conditional distribution: A case study of danjiangkou reservoir in Hanjiang Basin", Math. Probl. Eng., 11, 1-16.
  208. Yue, S., Pilon, P. and Cavadias, G. (2002), "Power of the Mann-Kendall and Spearman's rho test for detecting monotonic trends in hydrological series", J. Hydrol., 259, 254-271. https://doi.org/10.1016/S0022-1694(01)00594-7
  209. Yue, S. (1999), "Applying the bivariate normal distribution to flood frequency analysis", Water Int., 24(3), 248-252. https://doi.org/10.1080/02508069908692168
  210. Yue, S. (2001), "A bivariate gamma distribution for use in multivariate flood frequency analysis", Hydrol. Process., 15, 1033-1045. https://doi.org/10.1002/hyp.259
  211. Yue, S. (2000), "The bivariate lognormal distribution to model a multivariate flood episode", Hydrol. Process., 14, 2575-2588. https://doi.org/10.1002/1099-1085(20001015)14:14<2575::AID-HYP115>3.0.CO;2-L
  212. Yue, S., Ouarda, T.M.B.J., Bobee, B., Legendre, P and Bruneau, P. (1999), "The Gumbel mixed model for flood frequency analysis", J. Hydrol., 226(1-2), 88-100. https://doi.org/10.1016/S0022-1694(99)00168-7
  213. Yue, S. and Rasmussen, P. (2002), "Bivariate frequency analysis: discussion of some useful concepts in hydrological application", Hydrol. Processes, 16, 2881-2898. https://doi.org/10.1002/hyp.1185
  214. Zhang, L (2005), "Multivariate hydrological frequency analysis and risk mapping", Doctoral dissertation, Beijing Normal University.
  215. Zhang, L. and Singh, V.P. (2006), "Bivariate flood frequency analysis using copula method", J. Hydrol. Eng., 11(2), 150. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:2(150)
  216. Zhang, L. and Singh, V.P. (2007), "Trivariate flood frequency analysis using the Gumbel-Hougaard copula", J. Hydrol. Eng., 12(4), 431- 439. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(431)
  217. Zhang, R., Chen, Xi., Cheng, Q., Zhang, Z. and Shi, P. (2016), "Joint probability of precipitation and reservoir storage for drought estimation in the headwater basin of the Huaihe River, China", Stoch. Environ. Res. Risk Assess., 30, 1641-165 https://doi.org/10.1007/s00477-016-1249-z
  218. Zhang, R., Li, Q., Chow, T.T., Li, S. and Danielescu, S. (2013), "Baseflow separation in a small watershed in New Brunswick, Canada, using a recursive digital filter calibrated with the conductivity mass balance method", Hydrol. Process., 27, 2659-2665, DOI:10.1001/hyp.9417.