DOI QR코드

DOI QR Code

Biological Control of Thrips Using a Self-produced Predatory Mite Stratiolaelaps scimitus (Acari: Laelapidae) in the Greenhouse Chrysanthemum

시설재배지 국화에서 자가생산한 뿌리이리응애 (응애아강: 가시진드기과)를 활용한 총채벌레의 생물적 방제

  • Jung, Duck-Oung (Sustainable Agriculture Research Center, Kyungpook National University) ;
  • Hwang, Hwal-Su (Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Kim, San-Young (Gumi Floriculture Research Institute, Gyeongsangbukdo Agricultural Research and Extension Services) ;
  • Lee, Kyeong-Yeoll (Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
  • 정덕웅 (경북대학교 친환경농업연구센터) ;
  • 황활수 (경북대학교 농업생명과학대학) ;
  • 김산영 (경북농업기술원 구미화훼연구소) ;
  • 이경열 (경북대학교 농업생명과학대학)
  • Received : 2019.08.19
  • Accepted : 2019.08.28
  • Published : 2019.09.01

Abstract

For greenhouse crops, thrips is one of the major insect pests, but its control is difficult owing to short generation time, rapid escaping behavior, and development of pesticide resistance. Stratiolaelaps scimitus (Womersley) is a soil-dwelling predatory mite attacking various soil invertebrate species, including thrips. Using the method by growers' self-production, we mass-reared S. scimitus colony and investigated thrips control in the greenhouse chrysanthemum. The initial density of thrips was six individuals/flower. The treatment with one S. scimitus box in the greenhouse was estimated to be $1,000individuals/m^2$. From August to September 2018, the greenhouse was released with a total of 10 boxes of S. scimitus. The density of thrips in the untreated and the treated cultivar was $53.7{\pm}7.0$ and $13.5{\pm}1.7$ on the late September, respectively, which indicated a reduction of 74.9% in the treated cultivar. Our results suggest that S. scimitus was highly effective for the control of thrips in the greenhouse chrysanthemum although temperature is very high during the summer season.

총채벌레는 시설재배작물의 주요 해충으로서 짧은 세대, 기피행동 및 살충제 저항성 발달 등으로 인하여 방제가 어려운 실정이다. 뿌리이리응애[Stratiolaelaps scimitus (Womersley)]는 포식성 토양응애로서 땅에 떨어져 용화되는 총채벌레를 포식한다. 본 연구에서는 농가자가생산법에 따라 증식한 뿌리이리응애를 활용하여 2018년 8~9월에 시설재배지 국화에 발생한 총채벌레의 밀도억제효과를 분석하였다. 총채벌레의 초기밀도는 꽃송이 당 약 6마리였다. 온실에 뿌리이리응애 한 상자 처리 시 밀도는 약 1,000마리/$m^2$ 정도 된다. 시험기간 동안 총 10상자를 처리하였다. 9월 말 무처리 온실의 총채벌레 밀도는 $53.7{\pm}7.0$마리로 8.8배 증가한 반면에 처리 온실의 밀도는 $13.5{\pm}1.7$마리로 2.1배 증가하였다. 처리구의 밀도는 무처리구 대비 74.9%가 억제되었다. 즉, 여름기간 국화재배시설의 고온 조건에도 불구하고 뿌리이리응애를 이용하여 총채벌레의 밀도를 억제할 수 있는 가능성이 높다고 판단된다.

Keywords

References

  1. Bennison, J., Maulden, K., Maher, H., 2002. Choice of predatory mites for biological control of ground-dwelling stages of western flower thrips within a 'push-pull' strategy on pot chrysanthemum. IOBC/WPRS Bull. 25, 9-12.
  2. Berndt, O., Meyhofer, R., Poehling, H.M., 2004. The edaphic phase in the ontogenesis of Frankliniella occidentalis and comparison of Hypoaspis miles and Hypoaspis aculeifer as predators of soil-dwelling thrips stages. Biol. Control 30, 17-24. https://doi.org/10.1016/j.biocontrol.2003.09.009
  3. Chambers, R.J., Wright, E.M., Lind, R.J., 1993. Biological control of glasshouse sciarid larvae (Bradysia spp.) with the predatory mite, Hypoaspis miles on Cyclamen and Poinsettia. Biocontrol Sci. Technol. 3, 285-293. https://doi.org/10.1080/09583159309355283
  4. Chown, S.L., Terblanche, J.S., 2006. Physiological diversity in insects: ecological and evolutionary contexts. Adv. Insect Physiol. 33, 50-152. https://doi.org/10.1016/S0065-2806(06)33002-0
  5. Colinet, H., Sinclair, B.J., Vernon, P., Renault, D., 2015. Insects in fluctuating thermal environments. Annu. Rev. Entomol. 60, 123-140. https://doi.org/10.1146/annurev-ento-010814-021017
  6. Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R., 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Marine Biol. Biotech. 3, 294-299.
  7. Gao, Y., Lei, Z., Reitz, S.R., 2012. Western flower thrips resistance to insecticides: detection, mechanisms, and management strategies. Pest Manag. Sci. 68, 1111-1121. https://doi.org/10.1002/ps.3305
  8. Hoddle, M.S., Mound, L.A., Paris, D.L., 2008. Thrips of California. CBIT Publishing, Queensland, Australia. (http://keys.lucidcentral.org/keys/v3/thrips_of_california/Thrips_of_California. html).
  9. Hyun, J.W., Hwang, R.Y., Lee, K.S., Song, J.H., Kwon, H.M., Hyun, D.H., Kim, K.S., 2012. Seasonal occurrence of yellow tea thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae), in citrus orchards and its damage symptoms on citrus fruits (in Korean with English abstract). Korean J. Appl. Entomol. 51, 1-7. https://doi.org/10.5656/KSAE.2012.01.1.055
  10. Jung, D.O., Hwang, H.S., Kim, J.W., Lee, K.Y., 2018. Development of the mass-rearing technique for a predatory mite Stratiolaelaps scimitus (Acari: Laelapidae) using the double box system. Korean J. Appl. Entomol. 57, 253-260. https://doi.org/10.5656/KSAE.2018.07.0.023
  11. Kim, H.Y., Kim, J.H., Kang, S.H., Lee, Y.H., Choi, M.Y., 2009. Biological control of Frankliniella occidentalis (Thysanoptera: Thripidae) on cucumber, using Amblyseius swirskii (Acari: Phytoseiidae). Korean. J. Appl. Entomol. 48, 355-359. https://doi.org/10.5656/KSAE.2009.48.3.355
  12. Kim, J.H., Byun, Y.U., Kim, Y.H., Park, C.G., 2006. Biological control of thrips with Orius strigicollis (Poppius) (Hemiptera: Anthocoridae) and Amblyseius cucumeris (Oudemans) (Acari: Phytoseiidae) on greenhouse green pepper, sweet pepper and cucumber. Korean J. Appl. Entomol. 45, 1-7.
  13. Li, H.B., Shi, L., Lu, M.X., Wang, J.J., Du, Y.Z., 2011. Thermal tolerance of Frankliniella occidentalis: effects of temperature, exposure time, and gender. J. Therm. Biol. 36, 437-442. https://doi.org/10.1016/j.jtherbio.2011.07.010
  14. Messelink, G.J., Holstein-Saj, R.V., 2008. Improving thrips control by the soil-dwelling predatory mite Macrocheles robustulus (Berlese). IOBC/WPRS Bull. 32, 135-138.
  15. Messelink, G.J., Steenpal, S.E.F.V., Ramakers, P.M.J., 2006. Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber. Biol. Control 51, 753-768.
  16. Morse, J.G., Hoddle, M.S., 2006. Invasion biology of thrips. Ann. Rev. Entomol. 51, 67-89. https://doi.org/10.1146/annurev.ento.51.110104.151044
  17. Mouden, S., Sarmiento, K.F., Klinkhamer, P.G., Leiss, K.A., 2017. Integrated pest management in western flower thrips: past, present and future. Pest Manag. Sci. 73, 813-822. https://doi.org/10.1002/ps.4531
  18. Reitz, S.R., Gao, Y., Kirk, W., Hoddle, M.S., Leiss, K.A., Funderburk, J., 2019. Invasion biology, ecology, and management of western flower thrips. Ann. Rev. Entomol. In Press.
  19. Riley, D.G., Joseph, S.V., Srinivasan, R., Diffie, S., 2011. Thrips vectors of Tospoviruses. J. Int. Pest Manag. 2, 1-10.
  20. Shibao, M., Inoue, Y., Morikawa, S., Tanaka, H., 2010. Lethal high temperatures of onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), and control of the thrips with solar radiation by covering the ground with film. Jap. J. Appl. Entomol. Zool. 54, 71-76. https://doi.org/10.1303/jjaez.2010.71
  21. Thoeye, C., van der Linden, A., Bernaerts, F., Blust, R., Decleir, W., 1987. The effect of diurnal temperature cycles on survival of Artemia from different geographical origins, In: Sorgeloos, P., Bengston, D.A., Decleir, W., Jaspers, E. (Eds.), Artemia Research and its Applications, Vol. 1: Morphology, Genetics, Strain Characterization, Toxicology. Wetteren, Belg. Universa, pp. 233-239.
  22. Thompson, R.M., Beardall, J., Beringer, J., Grace, M., Sardina, P., 2013. Means and extremes: building variability into communitylevel climate change experiments. Ecol. Lett. 16, 799-806. https://doi.org/10.1111/ele.12095
  23. Walter, D.E., Campbell, N.J.H., 2003. Exotic vs endemic biocontrol agents: Would the real Stratiolaelaps miles (Berlese) (Acari: Mesostigmata: Laelapidae), please stand up?. Biol. Control 26, 253-269. https://doi.org/10.1016/S1049-9644(02)00171-8
  24. Wang, Z.Q., Wang, B.M., Hu, X.Y., Lan, Q.X., Luo, J., Fan, Q.H., 2009. Effect of temperature and relative humidity on the development of Stratiolaelaps scimitus. Acta Agric. Univ. Jiangxiensis 31, 1039-1043. https://doi.org/10.3969/j.issn.1000-2286.2009.06.013
  25. Whitefield, A.E., Ullman, D.E., German, T.L., 2005. Tospovirusthrips interactions. Ann. Rev. Phytopathol. 43, 459-489. https://doi.org/10.1146/annurev.phyto.43.040204.140017
  26. Yano, E., 2004. Recent development of biological control and IPM in greenhouses in Japan. J. Asia-Pac. Entomol. 7, 5-11. https://doi.org/10.1016/S1226-8615(08)60195-8
  27. Ydergaard, S., Enkegaard, A., Brodsgaard, H.F., 1997. The predatory mite Hypoaspis miles: temperature dependent life table characteristics on a diet of sciarid larvae, Bradysia paupera and B. tritici. Entomol. Exp. Appl. 85, 177-187. https://doi.org/10.1046/j.1570-7458.1997.00248.x