고효율 양자점 발광소자를 위한 양자점 나노구조체 제어

  • 임재훈 (아주대학교 화학공학과) ;
  • 최영호 (아주대학교 화학공학과)
  • 발행 : 2019.02.28

초록

양자점 발광소자 기술은 지난 20여년 동안 급격한 발전이 이루어졌으며, 이는 양자점 발광체 및 소자기술 전반에 대한 집중적인 연구의 결과로 생각할 수 있다. 그러나 양자점 발광소자기술의 상용화를 위해서 해결해야 할 문제는 소재(예: 무중금속 양자점 구현, 대량생산 등) 및 소자(예: 수명문제, 대면적 프린팅문제, 효율저하문제)에 걸쳐 산적해 있다. 본 기고문에서는 이상의 다양한 문제 중 양자점 발광소자의 효율저하문제를 집중적으로 다루었다. 비록 양자점 나노구조체의 제어 및 발광소자 연구가 여전히 카드뮴 기반 양자점을 바탕으로 한 기초연구영역에 머물러 있지만, 향후 친환경 양자점 합성기술이 본격적으로 발전하게 된다면 우수한 효율과 안정성을 보이는 양자점 발광소자가 구현되리라 기대된다.

키워드

참고문헌

  1. M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996). https://doi.org/10.1021/jp9530562
  2. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B 101, 9463 (1997). https://doi.org/10.1021/jp971091y
  3. X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997). https://doi.org/10.1021/ja970754m
  4. D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, Nano Lett. 1, 207 (2001). https://doi.org/10.1021/nl0155126
  5. D. V. Talapin, I. Mekis, S, Gotzinger, A. Kornowski, O, Benson, and H. Weller, J. Phys. Chem. B 108, 18826 (2004). https://doi.org/10.1021/jp046481g
  6. D. J. Norris, A. L. Efros, M. Rosen, and M. G. Bawendi, Phys. Rev. B 53, 16347 (1996). https://doi.org/10.1103/PhysRevB.53.16347
  7. A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996). https://doi.org/10.1103/PhysRevB.54.4843
  8. M. Nirmal, D. J. Norris, M. Kuno, M.G. Bawendi, A. L. Efros, and M. Rosen, Phys. Rev. Lett. 75, 3728 (1995). https://doi.org/10.1103/PhysRevLett.75.3728
  9. J. Lim, W. K. Bae, J. Kwak, S. Lee, C. Lee, and K. Char, Opt. Mater. Express 2, 594 (2012). https://doi.org/10.1364/OME.2.000594
  10. J. M. Pietryga, Y.-S. Park, J. Lim, A. F. Fidler, W. K. Bae, S. Brovelli, and V. I. Klimov, Chem. Rev. 116, 10513 (2016). https://doi.org/10.1021/acs.chemrev.6b00169
  11. J. Chen, V. Hardev, J. Hartlove, J. Hofler, and E. Lee, SID Int. Symp. Dig. Tec. 43, 895 (2012).
  12. C.-Y. Han and H. Yang, J. Korean Ceram. Soc. 54, 449 (2017). https://doi.org/10.4191/kcers.2017.54.6.03
  13. Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, Nat. Photonics 7, 13 (2012). https://doi.org/10.1038/nphoton.2012.328
  14. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, Nature 370, 354 (1994). https://doi.org/10.1038/370354a0
  15. B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, Nature Photon. 7, 407 (2013). https://doi.org/10.1038/nphoton.2013.70
  16. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, Nature 515, 96 (2014). https://doi.org/10.1038/nature13829
  17. K. P. Acharya, A. Titov, J. Hyvonen, C. Wang, J. Tokarz, and P. H. Holloway, Nanoscale 9, 14451 (2017). https://doi.org/10.1039/C7NR05472F
  18. L. Wang, J. Lin, Y. Hu, X. Guo, Y. Lv, Z. Tang, J. Zhao, Y. Fan, N. Zhang, Y. Wang, and X. Liu, ACS Appl Mater. Interfaces 9, 38755 (2017). https://doi.org/10.1021/acsami.7b10785
  19. Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, ACS Appl. Mater. Interfaces 10, 17295 (2018). https://doi.org/10.1021/acsami.8b05092
  20. J. K. L. M. Kuno, B. O. Dabbousi, F. V. Mikulec, M. G. Bawendi, The Journal of Chemical Physics 106, 9869 (1997). https://doi.org/10.1063/1.473875
  21. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, Adv. Mater. 22, 3076 (2010). https://doi.org/10.1002/adma.201000525
  22. O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, Nature Materials 12, 445 (2013). https://doi.org/10.1038/nmat3539
  23. M. Nasilowski, P. Spinicelli, G. Patriarche, and B. Dubertret, Nano Lett. 15, 3953 (2015). https://doi.org/10.1021/acs.nanolett.5b00838
  24. B. G. Jeong, Y.-S. Park, J. H. Chang, I. Cho, J. K. Kim, H. Kim, K. Char, J. Cho, V. I. Klimov, P. Park, D. C. Lee, and W. K. Bae, ACS Nano 10, 9297 (2016). https://doi.org/10.1021/acsnano.6b03704
  25. J. W. Stouwdam and R. A. J. Janssen, J. Mater. Chem. 18 (2008).
  26. K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, Nat Photon 3, 341 (2009). https://doi.org/10.1038/nphoton.2009.92
  27. T.-H. Kim, K.-S. Cho, E. K. Lee, S. J . Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, andK. Kim, Nat Photon 5, 176 (2011). https://doi.org/10.1038/nphoton.2011.12
  28. M. F. Rico Meerheim, Simone Hofmann, Bjorn Lussem, Karl Leo, Appl. Phys. Lett. 91, 253305 (2010).
  29. S, Coe, W.-K. Woo, M. Bawendi, and V. Bulovic, Nature 420, 800 (2002). https://doi.org/10.1038/nature01217
  30. P. O. Anikeeva, J, E. Halpert, M. G. Bawendi, and V. Bulovic, Nano Lett. 9, 2532 (2009). https://doi.org/10.1021/nl9002969
  31. J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, Nano Lett. 12, 2362 (2012). https://doi.org/10.1021/nl3003254
  32. W. K. Bae, Y.-S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, Nat. Commun. 4 (2013).
  33. J. Lim, B. G. Jeong, M. Park, J. K. Kim, J. M. Pietryga, Y.-S. Park, V. I. Klimov, C. Lee, D. C. Lee, and W. K. Bae, Adv. Mater. 26, 8034 (2014). https://doi.org/10.1002/adma.201403620
  34. N. Oh, S. Nam, Y. Zhai, K. Deshpande, P. Trefonas, and M. Shim, Nat. Commun. 5, 3642 (2014). https://doi.org/10.1038/ncomms4642
  35. J. H. Chang, P. Park, H. Jung, B. G. Jeong, D. Hahm, G. Nagamine, J. Ko, J. Cho, L. A. Padilha, D. C. Lee, C. Lee, K. Char, and W. K. Bae, ACS Nano 12, 10231 (2018). https://doi.org/10.1021/acsnano.8b03386
  36. D. Bozyigit, O. Yarema, and V. Wood, Adv. Funct. Mater. 23, 3024 (2013). https://doi.org/10.1002/adfm.201203191
  37. Y. Shirasaki, G. J. Supran, W. A. Tisdale, and V. Bulovic, Phys. Rev. Lett. 110, 217403 (2013). https://doi.org/10.1103/PhysRevLett.110.217403
  38. S. A. Crooker, T. Barrick, J. A. Hollingsworth, and V. I. Klimov, Appl. Phys. Lett. 82, 2793 (2003). https://doi.org/10.1063/1.1570923
  39. P. Reiss, J. Bleuse, and A. Pron, Nano Lett. 2, 781 (2002). https://doi.org/10.1021/nl025596y
  40. L. Li and P. Reiss, J. Am. Chem. Soc. 130, 11588 (2008). https://doi.org/10.1021/ja803687e
  41. J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, J. Am. Chem. Soc. 130, 4879 (2008). https://doi.org/10.1021/ja710437r
  42. P. T. K. Chin, C. de Mello Donega, S. S. van Bavel, S. C. J. Meskers, N. A. J. M. Sommerdijk, and R. A. J. Janssen, J. Am. Chem. Soc. 129, 14880 (2007). https://doi.org/10.1021/ja0738071
  43. D. Oron, M. Kazes, and U. Banin, Phys. Rev. B, 75, 035330 (2007). https://doi.org/10.1103/PhysRevB.75.035330
  44. S. A. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K. R. Zavadil, W. O. Wallace, D. Werder, and V. I. Klimov, J. Am. Chem. Soc. 129, 11708 (2007). https://doi.org/10.1021/ja068351m
  45. Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, J. Am. Chem. Soc. 130, 5026 (2008). https://doi.org/10.1021/ja711379k
  46. B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, Nat. Mater. 7, 659 (2008). https://doi.org/10.1038/nmat2222
  47. W. K. Bae, L. A. Padilha, Y.-S. Park, H. McDaniel, I. Robel, J. M. Pietryga, and V. I. Klimov, ACS Nano 7, 3411 (2013). https://doi.org/10.1021/nn4002825
  48. C. Javaux, B. Mahler, B. Dubertret, A. Shabaev, A. V. Rodina, A. L. Efros, D. R. Yakovlev, F. Liu, M. Bayer, G. Camps, L. Biadala, S. Buil, X. Quelin, and J. P. Hermier, Nat. Nanotechnol. 8, 206 (2013). https://doi.org/10.1038/nnano.2012.260
  49. G. E. Cragg and A. L. Efros, Nano Lett. 10, 313 (2010). https://doi.org/10.1021/nl903592h
  50. F. Garcia-Santamaria, S. Brovelli, R. Viswanatha, J. A. Hollingsworth, H. Htoon, S. A. Crooker, and V. I. Klimov, Nano Lett. 11, 687 (2011). https://doi.org/10.1021/nl103801e
  51. Y.-S. Park, J. Lim, N. S. Makarov, and V. I. Klimov, Nano Lett. 17, 5607 (2017). https://doi.org/10.1021/acs.nanolett.7b02438
  52. J. Lim, Y.-S. Park, and V. I. Klimov, Nat. Mater. 17, 42 (2017). https://doi.org/10.1038/nmat5011
  53. J. Lim, Y.-S. Park, K. Wu, H. J. Yun, and V. I. Klimov, Nano Lett. 18, 6645 (2018). https://doi.org/10.1021/acs.nanolett.8b03457