DOI QR코드

DOI QR Code

고밀도 폐유리와 제강슬래그의 중량 콘크리트 골재로의 적용성에 관한 연구

A Study on the Applicability of Heavyweight Waste Glass and Steel Slag as Aggregate in Heavyweight Concrete

  • 최소영 (강릉원주대학교 방재연구소) ;
  • 김일순 (강릉원주대학교 토목공학과) ;
  • 최윤석 (한국건설생활환경시험연구원) ;
  • 양은익 (강릉원주대학교 토목공학과)
  • 투고 : 2018.12.18
  • 심사 : 2019.02.22
  • 발행 : 2019.03.01

초록

현재 많은 국가들이 천연자원이 고갈되는 문제에 직면해있고, 골재 공급이 어려운 상황이다. 이러한 상황을 고려하기 위하여 대체 자원 개발을 위한 다양한 연구들이 수행되어왔다. 특히, 방사성 폐기물의 차폐를 위해 사용되는 고밀도 채움재는 많은 양의 골재를 필요로 한다. 또한, 채움재의 차폐 성능 개선을 위해서는 채움재의 밀도 증가가 요구된다. 따라서 밀도가 높은 산업폐자원의 중량콘크리트 골재로의 활용성을 확대하기 위한 기초 자료의 제공을 위해 본 연구가 수행되었다. 실험결과, OPC의 경우, 고밀도 폐유리에 의해 감소된 콘크리트의 강도는 제강슬래그를 사용해도 개선되지 않으나, 광물질 혼화재를 결합재로 사용하면 성능이 개선되었다. 따라서 고밀도 폐유리와 제강슬래그를 중량 콘크리트에 적용할 경우, 광물질 혼화재와 함께 사용하고, FA보다는 BFS를 사용하는 것이 바람직한 것으로 나타났다. 한편, 제강슬래그를 중량콘크리트의 골재로 대체할 경우, 제강슬래그의 높은 밀도로 인하여 탄성계수와 차폐성능의 개선이 가능할 것으로 판단된다.

The many countries are facing the shortage of natural resources, and the supply of aggregates are being exhausted. To consider this situation a variety of studies were performed for the development of alternative resources. In particular, high density filler material was used for shielding radioactive waste, large amount of natural aggregates are required in order to produce filler material. Also, in order to improve the shielding performance of filler material, it is required to increase the density of the filler material. Therefore, in this study was carried out to provide basic data for expanding the feasibility of high density industrial waste resource as aggregate in heavyweight concrete. From the test results, OPC case, concrete strength decreased by using heavyweight waste glass as fine aggregate, however, it is improved by using mineral admixture as binder. Therefore, when the heavyweight waste glass and steel slag are applied to heavyweight concrete, it is desirable to use mineral admixture, especially to use BFS than FA. Meanwhile, when the steel slag was replaced as coarse aggregate of heavyweight concrete, elasticity of modulus and radiation shielding performance can be improved owing to high density of steel slag.

키워드

참고문헌

  1. Ministry of Land Infrastructure and Transport of Korea (2014), The fifth aggregate demand and aggregate supply (in Korean).
  2. ACI 318-08 (2008), Building Code Requirements for Structural Concrete, American Concrete Institute.
  3. ACI 349-13 (2013), Code Requirements for Nuclear Safety Related Concrete Structures, American Concrete Institute.
  4. CEB_FIP Code (2010), CEB-FIP Model Code, Design Code, Comite Euro International du Beton, Lausanne.
  5. Chang, C. I. (1999), A study on the radiation shielding performance of heavy weight concrete, Ph. D. dissertation, Kwangju, Chonnam National University, Department of architectural engineering (in Korean).
  6. Choi, S. W., Kim, V., Chang, W. S., Kim, E. Y. (2007). The Present Situation of Production and Utilization of Steel Slag in Korea and Other Countries. Magazine of Korea Concrete Institute, 19(6), 28-33 (in Korean). https://doi.org/10.22636/MKCI.2007.19.6.28
  7. Choi, S. Y., Choi, Y. S., Won, M. S., & Yang, E. I. (2015). Evaluation on the Applicability of Heavy Weight Waste Glass as Fine Aggregate of Shielding Concrete. Journal of the Korea Institute for Structural Maintenance and Inspection, 19(4), 101-108 (in Korean). https://doi.org/10.11112/jksmi.2015.19.4.101
  8. Choi, S. Y., Choi, Y. S., & Yang, E. I. (2017). Effects of Heavy Weight Waste Glass Recycled as Fine Aggregate on the Mechanical Properties of Mortar Specimens. Annals of Nuclear Energy, 99, 372-382. https://doi.org/10.1016/j.anucene.2016.09.035
  9. Choi, Y. S., Kim, I. S., Choi, S. Y., & Yang, E. I. (2019). Fundamental Properties and Radioactivity Shielding Characteristics of Mortar Specimen Utilizing CRT Waste Glass as Fine Aggregate. Journal of the Korea Institute for Structural Maintenance and Inspection, 23(1), 163-170 (in Korean). https://doi.org/10.11112/JKSMI.2019.23.1.163
  10. Japan Society of Civil Engineers (2007), Standard specifications for concrete structures.
  11. Kim, J. M., Cho, S. H., Kwon, K. J., and Kim, M. H. (2005), An Experimental Study on the Engineering Properties of Radiation Shielding Concrete According to the Replacement Ratio of Rapid-Chilled Steel Slag Fine Aggregate, Journal of the architectural institute of Korea : Structure & construction, 197, 121-128.
  12. Korea Atomic Industrial Forum, (2017), Nuclear Industry, Korea Atomic Industrial Forum, 37(10), 10-14.
  13. Korea Concrete Institute (2012), Concrete Structure Design Code and Commentary, Korea Concrete Institute, Seoul.
  14. Kim, Y. M., Choi, S. Y., Kim, I. S., & Yang, E. I. (2018). A study on the Mechanical Properties of Concrete using Electronic Waste as Fine Aggregate. Journal of the Korea Institute for Structural Maintenance and Inspection, 22(2), 90-97 (in Korean). https://doi.org/10.11112/JKSMI.2018.22.2.090
  15. Kuo, W. Ten., Shu, C. Y. (2014). Application of high-temperature rapid catalytic technology to forecast the volumetric stability behavior of containing steel slag mixtures. Construction and Building Materials, 50, 463-470. https://doi.org/10.1016/j.conbuildmat.2013.09.030
  16. Mehta. P. K. (2014), Concrete structures, properties and materials, 4th Edition, Prentice-Hall, Inc., Englewood cliffs, New jersey, 256-264.
  17. Lee, S. T., Park K. P. (2017). Mechanical Properties and Durability of Concrete Incorporating Air-Cooled Slag, Journal of the Korea Academia-Industrial Cooperation Society, 18(3), 256-363 (in Korean). https://doi.org/10.5762/KAIS.2017.18.1.256
  18. Lim, H. S., Lee, H. S., and Choi, J. S. (2011), Experimental Study on the development of X-ray shielding concrete utilizing electronic arc Furnace oxidizing slag, Journal of the Architectural Institute of Korea : Structure & Construction, 273, 125-131 (in Korean).
  19. Lim, H. S., Lee, H. S. (2017 (a)). Study on Performance Evaluation of Concrete Using Electric Arc Furnace Oxidizing Slag Aggregate. Journal of the Korea Institute for Structural Maintenance and Inspection, 21(4), 97-103 (in Korean). https://doi.org/10.11112/jksmi.2017.21.4.097
  20. Lim, H. S., Lee, H. S.(2017(b)). Experimental Study on Evaluation on Volume Stability of the Electric Arc Furnace Oxidizing Slag Aggregate. Journal of the Korea Institute for Structural Maintenance and Inspection, 21(2), 78-86 (in Korean). https://doi.org/10.11112/jksmi.2017.21.2.078
  21. Ling, T. C., Poon, C. S., Lam, W. S., Chan, T. P., and Fung, K. K. L. (2011), Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications, Journal of Hazardous Materials, 199-200, 321-327. https://doi.org/10.1016/j.jhazmat.2011.11.019
  22. Park, Hun il; Kim, J. M. (2012). Characteristic of the Electric Arc Furnace Slag with Various Sources as Concrete Aggregate. Journal of Korea Society of Waste Management, 29(5), 431-440 (in Korean).
  23. Ryu, D. H., Kim, K. H., Park, C. G., Son, Y. S.(2009). The Study of Concrete Basic Properties Using Oxidized Electric-furnace-slag Aggregate. Journal of the Architectural Institute of Korea Structure & Construction, 25(8), 143-150 (in Korean).
  24. Yoo, J. H., Choi, J.J. (2006). A Study on the Residual Expansibility of Electric Arc Furnace Slag Aggregate, Journal of the Koeran Recycled Construction Resources Institute, 2, 128-135 (in Korean).
  25. ZZ. Ismail, E.A. AL-Hashmi (2009), Recycling of waste glass as a partial replacement for fine aggregate in concrete, Waste Management, 29, 655-659. https://doi.org/10.1016/j.wasman.2008.08.012