DOI QR코드

DOI QR Code

Wind turbine testing methods and application of hybrid testing: A review

  • Lalonde, Eric R. (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University) ;
  • Dai, Kaoshan (Department of Civil Engineering, Sichuan University) ;
  • Lu, Wensheng (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University) ;
  • Bitsuamlak, Girma (Department of Civil and Environmental Engineering, University of Western Ontario)
  • Received : 2018.07.16
  • Accepted : 2019.06.17
  • Published : 2019.09.25

Abstract

This paper presents an overview of wind turbine research techniques including the recent application of hybrid testing. Wind turbines are complex structures as they are large, slender, and dynamic with many different operational states, which limits applicable research techniques. Traditionally, numerical simulation is widely used to study turbines while experimental tests are rarer and often face cost and equipment restrictions. Hybrid testing is a relatively new simulation method that combines numerical and experimental techniques to accurately capture unknown or complex behaviour by modelling portions of the structure experimentally while numerically simulating the remainder. This can allow for increased detail, scope, and feasibility in wind turbine tests. Hybrid testing appears to be an effective tool for future wind turbine research, and the few studies that have applied it have shown promising results. This paper presents a literature review of experimental and numerical wind turbine testing, hybrid testing in structural engineering, and hybrid testing of wind turbines. Finally, several applications of hybrid testing for future wind turbine studies are proposed including multi-hazard loading, damped turbines, and turbine failure.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Science and Technology Commission, Science and Technology Commission of Shanghai Municipality

References

  1. Abdelkader, A., Aly, A.M., Razaee, M., Bitsuamlak, G.T. and El Naggar, M.H. (2016), "On the evaluation of wind loads for wind turbines' foundation design: Experimental and numerical investigations", Struct. Des. Tall Spec. Build., 26(9). https://doi.org/10.1002/tal.1362.
  2. Adhikari, S. and Bhattacharya, S. (2011), "Vibrations of windturbines considering soil-structure interaction", Wind Struct., 14(2), 85-112. https://doi.org/10.12989/was.2011.14.2.085.
  3. Ahmadizadeh, M. and Mosqueda, G. (2007), "Combined implicit or explicit integration steps for hybrid simulation", Earthq. Eng. Struct. D., 36(15), 2325-2343. https://doi.org/10.1061/40944(249)1.
  4. Amirinia, G. and Jung, S. (2017), "Along-wind buffeting responses of wind turbines subjected to hurricanes considering unsteady aerodynamics of the tower", Eng. Struct., 138, 337-350. https://doi.org/10.1016/j.engstruct.2017.02.023.
  5. Asareh, M. and Volz, J.S. (2013), "Evaluation of Aerodynamic and Seismic Coupling for Wind Turbines Using Finite Element Approach", IMECE 2013, San Diego, USA, November.
  6. Azcona, J., Bouchotrouch, F., Gonzalez, M., Garciandia, J., Munduate, X., Kelberlau, F. and Nygaard, T.A. (2014), "Aerodynamic thrust modelling in wave tank tests of offshore floating wind turbines using a ducted fan", J. Physics: Conference Series, 524. https://doi.org/10.1088/1742-6596/524/1/012089.
  7. Bachynski, E.E., Chabaud, V. and Sauder, T. (2015), "Real-time hybrid model testing of floating wind turbines: sensitivity to limited actuation", Energy Procedia, 80, 2-12. https://doi.org/10.1016/j.egypro.2015.11.400.
  8. Bayati, I., Belloli, M., Bernini, L., Giberti, H. and Zasso, A. (2016), "Scale model technology for floating offshore wind turbines", IET Renewable Power Generation, 11(9), 1120-1126. https://doi.org/10.1049/iet-rpg.2016.0956.
  9. Berny-Brandt, E.A. and Ruiz, S.E. (2016), "Reliability over time of wind turbines towers subjected to fatigue", Wind Struct., 23(1), 75-90. https://doi.org/10.12989/was.2016.23.1.075.
  10. Brodersen, M.L., Ou, G., Hogsberg, J. and Dyke, S. (2016), "Analysis of hybrid viscous damper by real time hybrid simulations", Eng. Struct., 126, 675-688. https://doi.org/10.1016/j.engstruct.2016.08.020.
  11. Bukala, J., Damaziak, K., Karimi, H.R. and Malachowski, J. (2016), "Aero-elastic coupled numerical analysis of small wind turbine-generator modelling", Wind Struct., 23(6), 577-594. https://doi.org/10.12989/was.2016.23.6.577.
  12. Burton, T., Sharpe, D., Jenkins, N. and Bossanyi, E. (2002), Wind Energy Handbook, John Wiley & Sons.
  13. Calderer, A., Guo, X., Shen, L. and Sotiropoulos, F. (2014), "Coupled fluid-structure interaction simulation of floating offshore wind turbines and waves: a large eddy simulation approach", J. Physics: Conference Series, 524. https://doi.org/10.1088/1742-6596/524/1/012091.
  14. Campagnolo, F., Petrovic, V., Bottasso, C.L. and Croce, A. (2016), "Wind Tunnel Testing of Wake Control Strategies", Proceedings of the 2016 American Control Conference, Boston, USA, July.
  15. Chabaud, V. (2016), "Real-Time Hybrid Model Testing of Floating Wind Turbines", Ph.D. Dissertation, Norwegian University of Science and Technology, Trondheim, Norway.
  16. Chae, Y., Phillips, B., Ricles, J.M. and Spencer, Jr., B.F. (2013), "An Enhanced Hydraulic Actuator Control Method for Large-Scale Real-Time Hybrid Simulations", Proceedings of the Structures Congress 2013, Pittsburgh, USA, May.
  17. Chen, C., Ricles, J.M., Marullo, T.M. and Mercan, O. (2009), "Real-time hybrid testing using the unconditionally stable explicit CR integration algorithm", Earthq. Eng. Struct. D., 38(1), 23-44. https://doi.org/10.1002/eqe.838.
  18. Chen, X., Li, C. and Xu, J. (2015a), "Failure investigation on a coastal wind farm damaged by super typhoon: A forensic engineering study", J. Wind Eng. Ind. Aerod., 147, 132-142. https://doi.org/10.1016/j.jweia.2015.10.007.
  19. Chen, J., Liu, Y. and Bai, X. (2015b), "Shaking table test and numerical analysis of offshore wind turbine tower systems controlled by TLCD", Earthquake Engineering and Engineering Vibration, 14, 55-75. https://doi.org/10.1007/s11803-015-0006-5.
  20. Chen, X. and Xu, J.Z. (2016), "Structural failure analysis of wind turbines impacted by super typhoon Usagi", Eng. Fail. Anal., 60, 391-404. https://doi.org/10.1016/j.engfailanal.2015.11.028.
  21. Chou, J.S. and Tu, W.T. (2011), "Failure analysis and risk management of a collapsed large wind turbine tower", Eng. Fail. Anal., 18, 295-313. https://doi.org/10.1016/j.engfailanal.2010.09.008.
  22. Dagnew, A.K. and Bitsuamlak, G.T. (2013), "Computational evaluation of wind loads on buildings: a review", Wind Struct., 16(6), 629-660. https://doi.org/10.12989/was.2013.16.6.629.
  23. Dai, K., Yichao, H., Changqing, G., Zhenhua, H. and Xiaosong, R. (2015a), "Rapid seismic analysis methodology for in-service wind turbine towers", Earthq. Eng. Eng. Vib., 14(3), 539-548. https://doi.org/10.1007/s11803-015-0043-0.
  24. Dai, K., Bergot, A., Liang, C., Xiang, W.N. and Huang, Z. (2015b), "Environmental issues associated with wind energy - A review", Renew. Energ., 75, 911-921. https://doi.org/10.1016/j.renene.2014.10.074.
  25. Dai, K., Wang, Y., Huang, Y., Zhu, W. and Xu, Y. (2017a), "Development of a modified stochastic subspace identification method for rapid structural assessment of in-service utility-scale wind turbine towers", Wind Energy, 20, 1687-1710. https://doi.org/10.1002/we.2117.
  26. Dai, K., Sheng, C., Zhao, Z., Yi, Z., Camara, A. and Bitsuamlak, G. (2017b), "Nonlinear response history analysis and collapse mode study of a wind turbine tower subjected to tropical cyclonic winds", Wind Struct., 25(1), 79-100. https://doi.org/10.12989/was.2017.25.1.079.
  27. Dermitzakis, S.N. and Mahin, S.A. (1985), "Development of substructuring techniques for on-line computer controlled seismic performance testing", UCB/EERC-85/04, University of California.
  28. Diaz, O. and Suarez, L.E. (2014), "Seismic analysis of wind turbines", Earthq. Spectra, 30(2), 743-765. https://doi.org/10.1193/123011EQS316M.
  29. Do, T.Q., van de Lindt, J.W. and Mahmoud, H. (2015a), "Fatigue life fragilities and performance-based design of wind turbine tower base connections", J. Struct. Eng., 141(7). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001150.
  30. Do, T.Q., van de Lindt, J.W. and Mahmoud, H. (2015b), "Fatigue life of wind turbine tower bases throughout Colorado", J. Perform. Constr. Fac., 29(4). https://doi.org/10.1061/(ASCE)CF.1943-5509.0000612.
  31. Drazin, P.L., Govindjee, S. and Mosalam, K.M. (2015), "Hybrid simulation theory for continuous beams", J. Eng. Mech., 141(7).
  32. Ebrahimi, A. and Mardani, R. (2018), "Tip-vortex noise reduction of a wind turbine using a winglet", J. Energy Eng., 144(1). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000909.
  33. Friedman, A., Dyke, S.J., Philips, B., Ahn, R., Dong, B., Chae, Y., Castaneda, N., Jiang, Z., Zhang, J., Cha, Y., Ozdagli, A.I., Spencer, Jr., B.F., Ricles, J., Christenson, R., Agrawal, A. and Sause, R. (2014), "Large-scale real-time hybrid simulation for evaluation of advanced damping system performance", J. Struct. Eng., 141(6). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001093.
  34. Germanischer Lloyd (2010), "Guidelines for the Certification of Wind Turbines", Hamburg, Germany.
  35. Glauert, H. (1935), "Airplane Propellers", Aerodynamic Theory, 169-360.
  36. Global Wind Energy Council (2017), "Global Wind Statistics 2017", Brussels, Belgium. http://gwec.net/wpcontent/uploads/vip/GWEC_PRstats2017_EN-003_FINAL.pdf
  37. Ge, M., Tian, D. and Deng, Y. (2016), "Reynolds number effect on the optimization of a wind turbine blade for maximum aerodynamic efficiency", J. Energy Eng., 142(1). https://doi.org/10.1061/(ASCE)EY.1943-7897.0000254.
  38. Hakuno, M., Shidawara, M. and Hara, T. (1969), "Dynamic destructive test of a cantilever beam, controlled by an analogcomputer", Proceedings of the Japanese Society of Civil Engineers, 171, 1-9. https://doi.org/10.2208/jscej1969.1969.171_1
  39. Haldar, S. and Basu, D. (2016), "Effect of Climate Change on the Reliability of Offshore Wind Turbine Foundations", Geo-Chicago 2016, Chicago, USA, August.
  40. Hall, M., Moreno, J. and Thiagarajan, K. (2014), "Performance specifications for real-time hybrid testing of 1:50-scale floating wind turbine models", Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, USA, June.
  41. Hashemi, M.J., Al-Ogaidi, Y., Al-Mahaidi, R., Kalfat, R., Tsang, H. and Wilson, J.L. (2017), "Application of hybrid simulation for collapse assessment of post-earthquake CFRP-repaired RC columns", J. Struct. Eng., 143(1). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001629.
  42. International Electrotechnical Commission (2005), "IEC 61400-1 International Standard: Wind turbines 3rd ed", Geneva, Switzerland.
  43. Imraan, M., Sharma, R.N. and Flay, R.G.J. (2013), "Wind tunnel testing of a wind turbine with telescopic blades: The influence of blade extension", Energy, 53, 22-32. https://doi.org/10.1080/j.energy.2013.03.008.
  44. Ishihara, T., Yamaguchi, A., Takahara, K., Mekaru, T. and Matsuura, S. (2015), "An Analysis of Damaged Wind Turbines by Typhoon Maemi in 2003", Proceedings of the 6th Asia-Pacific Conference on Wind Engineering, Seoul, Korea, September.
  45. Jennings, E., Ziaei, E., Pang, W., van der Lindt, J.W., Shao, X. and Bahmani, P. (2015), "Full-scale experimental investigation of second-story collapse behaviours in a woodframe building with an over-retrofitted first story", J. Perform. Constr. Fac., 30(2). https://doi.org/10.1061/(ASCE)CF.1943-5509.0000736.
  46. Jonkman, J.M. (2009), "Dynamics of offshore floating wind turbines - model development and verification", Wind Energy, 12(5), 459-492. https://doi.org/10.1002/we.347.
  47. Jonkman, J. (2018), "FAST", National Renewable Energy Laboratory, Washington D.C., USA. https://nwtc.nrel.gov/FAST.
  48. Karimirad, M. and Bachynski, E.E. (2017), "Sensitivity analysis of limited actuation for real-time hybrid model testing of 5MW bottom-fixed offshore wind turbines", Energy Procedia, 137, 14-25. https://doi.org/10.1016/j.egypro.2017.10.331.
  49. Katsanos, E., Thons, S. and Georgakis, C.T. (2016), "Wind turbines and seismic hazard: a state-of-the-art review", Wind Energy, 19(11), 2113-2133. https://doi.org/10.1002/we.1968.
  50. Ke, S.T., Xu, L. and Ge, Y.J. (2017), "The aerostatic response and stability performance of a wind turbine tower-blade coupled system considering blade shutdown position", Wind Struct., 25(6), 507-535. https://doi.org/10.12989/was.2017.25.6.507.
  51. Kessentini, S., Choura, S., Najar, F. and Franchek, M.A. (2010), "Modeling and dynamics of a horizontal axis wind turbine", J. Vib. Control, 16(13), 2001-2021. https://doi.org/10.1177/1077546309350189.
  52. Kimball, R., Goupee, A.J., Fowler, M.J., de Ridder, E.J. and Helder, J. (2014), "Wind/Wave Basin Verification of a Performance-Matched Scale-Model Wind Turbine on a Floating Offshore Wind Turbine Platform", OMAE 2014, San Francisco, USA, June.
  53. Kolay, C., Ricles, J.M., Marullo, T.M., Mahvashmohammadi, A. and Sauce, R. (2015), "Implementation and application of the unconditionally stable explicit parametrically dissipative KR-$\alpha$ method for real-time hybrid simulation", Earthq. Eng. Struct. D., 44(5). https://doi.org/10.1002/eqe.2484.
  54. Kolay, C. and Ricles, J.M. (2017), "Improved explicit integration algorithms for structural dynamic analysis with unconditional stability and controllable numerical dissipation", J. Earthq. Eng., 1-22. https://doi.org/10.1080/13632469.2017.1326423.
  55. Koukina, E., Kanner, S. and Yeung, R.W. (2015), "Actuation of Wind-Loading Torque on Vertical Axis Turbines at Model Scale", OCEANS 2015, Genoa, Italy, May.
  56. Lee, K.S. and Bang, H.J. (2012), "A study on the prediction of lateral buckling load for wind turbine tower structures", Int. J. Precision Eng. Manufact., 13(10). https://doi.org/10.1007/s12541-012-0240-y.
  57. Li, X., Ozdagli, A.I., Dyke, S.J., Liu, X. and Christenson, R. (2017), "Development and verification of distributed real-time hybrid simulation methods", J. Comput. Civil Eng., 31(4). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000654.
  58. Lim, C.N., Neild, S.A., Stoten, D.P., Drury, D. and Taylor, C.A. (2007), "Adaptive control strategy for dynamic substructuring tests", J. Eng. Mech., 133(8), 864-873. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:8(864).
  59. Liu, S. and Janajreh, I. (2012), "Development and application of an improved blade element momentum method model on horizontal axis wind turbines", Int. J. Energy Environ. Eng., 3(30). https://doi.org/10.1186/2251-6832-3-30.
  60. Luhur, M.R., Manganhar, A.L., Solangi, K.H., Jakhrani, A.Q., Mukwana, K.C. and Samo, S.R. (2016), "A review of the stateof-the-art in aerodynamic performance of horizontal axis wind turbine", Wind Struct., 22(1), 1-16. https://doi.org/10.12989/was.2016.22.1.001.
  61. Ma, H., Zhang, D. and Ma, Q. (2015), "Scale model experimental of a prestressed concrete wind turbine tower", Wind Struct., 21(3), 353-367. https://doi.org/10.12989/was.2015.21.3.353.
  62. Macquart, T., Maheri, A. and Busawon, K. (2012), "Improvement of the accuracy of the blade element momentum theory method in wind turbine aerodynamics analysis", Proceedings of the 2nd International Symposium on Environment-Friendly Energies and Applications, Newcastle, UK, June.
  63. Madsen, H.A., Mikkelsen, R., Oye, S., Bak, C. and Johansen, J. (2007), "A detailed investigation of the Blade Element Momentum (BEM) model based on analytical and numerical results and proposal for modifications of the BEM model", J. Physics: Conference Series, 75. https://doi.org/10.1088/1742-6596/75/1/012016.
  64. Maheri, A., Noroozi, S., Toomer, C. and Vinney, J. (2006), "Damping the fluctuating behaviour and improving the convergence rate of the axial induction factor in the BEMTbased rotor aerodynamic codes", European Wind Energy Conference, Athens, Greece, February.
  65. Mao, Z., Dai, K., Zhao, Z., Wang, Y., Meng, J. and Zhao, C. (2018) "Shaking table test study on seismic responses of a wind turbine under ground motions with different spectral characteristics", Adv. Eng. Sci., 50(3), 125-133. https://doi.org/10.15961/j.jsuese.201800369. [In Chinese]
  66. Mardfekri, M. and Gardoni, P. (2015), "Multi-hazard reliability assessment of offshore wind turbines", Wind Energy, 18(8), 1433-1450. https://doi.org/10.1002/we.1768.
  67. McCrum, D.P. and Broderick, B.M. (2013), "Evaluation of a substructured soft-real time hybrid test for performing seismic analysis of complex structural systems", Comput. Struct., 129, 111-119. https://doi.org/10.1016/j.compstruc.2013.02.009.
  68. McCrum, D. (2015), "Overview of Seismic Hybrid Testing", Proceedings of the SECED 2015 Conference: Earthquake Risk and Engineering towards a Resilient World, Cambridge, U.K., July.
  69. McTavish, S., Feszty, D. and Nitzsche, F. (2013), "Evaluating Reynolds number effects in small-scale wind turbine experiments", J. Wind Eng. Ind. Aerod., 120, 81-90. https://doi.org/10.1016/j.jweia.2013.07.006.
  70. Mosqueda, G., Stojadinovic, B. and Mahin, S.A. (2007), "Realtime error monitoring for hybrid simulation. Part I: Methodology and experimental verification", J. Struct. Eng., 133(8), 1100-1108. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:8(1100).
  71. Murray, J.A. and Sasani, M. (2017) "Collapse resistance of a seven-story structure with multiple shear-axial column failures using hybrid simulation", J. Struct. Eng., 143(5). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001746.
  72. Murtagh, P.J., Ghosh, A., Basu, B. and Broderick, B.M. (2008), "Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence", Wind Energy, 11, 305-317. https://doi.org/10.1002/we.249.
  73. Nakashima, N., Kato, H. and Takaoka, E. (1992), "Development of real-time pseudo dynamic testing", Earthq. Eng. Struct. D., 21, 79-92. https://doi.org/10.1002/eqe.4290210106.
  74. Navalkar, S.T., van Solingen, E. and van Wingerden, J. (2015), "Wind tunnel testing of subspace predictive repetitive control for variable pitch wind turbines", IEEE T. Contr. Syst. T., 23(6), 2101-2116. https://doi.org/10.1109/TCST.2015.2399452.
  75. Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div., 85, 67-94. https://doi.org/10.1061/JMCEA3.0000098
  76. Ning, S.A., Hayman, G., Damiani, R. and Jonkman, J. (2015), "Development and Validation of a New Blade Element Momentum Skewed-Wake Model within AeroDyn", Proceedings of the AIAA Science and Technology Forum Exposition 2015, Kissimmee, USA, January.
  77. Nunez-Casado, C., Lopez-Garcia, O., de las Heras, E.G., Cuerva-Tejero, A. and Gallego-Castillo, C. (2017), "Assembly strategies of wind turbine towers for minimum fatigue damage", Wind Struct., 25(6), 569-588. https://doi.org/10.12989/was.2017.25.6.569.
  78. Ojaghi, M., Williams, M.S., Dietz, M.S., Blakeborough, A. and Martinez, I.L. (2014), "Real-time distributed hybrid testing: coupling geographically distributed scientific equipment across the Internet to extend seismic testing capabilities", Earthq. Eng. Struct. D., 43, 1023-1043. https://doi.org/10.1002/eqe.2385.
  79. Phillips, B.M. and Spencer, B.F. (2012a), "Model-based feedforward-feedback actuator control for real-time hybrid simulation", J. Struct. Eng., 139(7). https://doi.org/10.1061/(ASCE)ST.1943-541X.0000606.
  80. Phillips, B.M. and Spencer, Jr. B.F. (2012b), "Model-based multiactuator control for real-time hybrid simulation", J. Eng. Mech., 139(2). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000493.
  81. Plummer, A.R. (2006), "Model-in-the-loop testing", Institution of Mechanical Engineers, 220, 183-199. https://doi.org/10.1243/09596518JSCE207.
  82. Prowell, I., Veletzos, M., Elgamal, A. and Restrepo, J. (2009), "Experimental and numerical seismic response of a 65kW wind turbine", J. Earthq. Eng., 13, 1172-1190. https://doi.org/10.1080/13632460902898324.
  83. Prowell, I., Elgamal, A., Uang, C. and Jonkman, J. (2010), "Estimation of seismic load demand for a wind turbine in the time domain", Proceedings of the European Wind Energy Conference 2010, Warsaw, Poland, April.
  84. Ramos, M.D.C., Mosqueda, G. and Hashemi, M.J. (2016), "Largescale hybrid simulation of a steel moment frame building structure through collapse", J. Struct. Eng., 142(1). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001328.
  85. Rezaee, M. and Aly, A.M. (2016), "Vibration control in wind turbines for performance enhancement: A comparative study", Wind Struct., 22(1), 107-131. https://doi.org/10.12989/was.2016.22.1.107.
  86. Riso National Laboratory (2002), "Guidelines for Design of Wind Turbines 2nd ed.", Copenhagen, Denmark.
  87. Rong, X., Xu, R., Wang, H. and Feng, S. (2017), "Analytical solution for natural frequency of monopile supported wind turbine towers", Wind Struct., 25(5), 459-474. https://doi.org/10.12989/was.2017.25.5.459.
  88. Selig, M.S. and McGranahan, B.D. (2004), "Wind tunnel aerodynamic tests of six airfoils for use on small wind turbines", NREL/SR-500-34515, National Renewable Energy Laboratory.
  89. Shao, X., Reinhorn, A.M. and Sivaselvan, M.V. (2011), "Realtime hybrid simulation using shake tables and dynamic actuators", J. Struct. Eng., 137(7), 748-760. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000314
  90. Sim, H.B., I. Prowell, A. Elgamal, and C.M. Uang (2014), "Flexural tests and associated study of a full-scale 65-kW wind turbine tower", J. Struct. Eng., 140(5). https://doi.org/10.1061/(ASCE)ST.1943-541X.0000924.
  91. Smith, V. and Mahmoud, H. (2016), "Multihazard assessment of wind turbine towers under simultaneous application of wind, operation, and seismic loads", J. Perform. Constr. Fac., 30(6). https://doi.org/10.1061/(ASCE)CF.1943-5509.0000898.
  92. Song, B., Yi, Y. and Wu, J. (2013), "Study on seismic dynamic response of offshore wind turbine tower with monopile foundation based on M method", Adv. Mater. Res., 663, 686-691. https://doi.org/10.4028/www.scientific.net/AMR.663.686.
  93. Spencer, Jr., B.F., Finholt, T.A., Foster, I., Kesselman, C., Beldica, C., Futrelle, J., Gullapalli, S., Hubbard, P., Liming, L., Marcusiu, D., Pearlman, L., Severance, C. and Yang, G. (2004), "NEESgrid: a distributed collaborator for advanced earthquake engineering experiment and simulation", Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August.
  94. Stamatopoulos, G.N. (2013), "Response of a wind turbine subjected to near-fault excitation and comparison with the Greek Aseismic Code provisions", Soil Dynam. Earthq. Eng., 46, 77-84. https://doi.org/10.1016/j.soildyn.2012.12.014.
  95. Stein, V.P. and Kaltenbach, H.J. (2016), "Wind-tunnel modelling of the tip-speed ratio influence on the wake evolution", J. Physics: Conference Series, 753. https://doi.org/10.1088/1742-6596/753/3/032061.
  96. Takanashi, K. et al. (1974), "Seismic failure analysis of structures by computer-pulsator on-line system", J. Institute of Industrial Science, 26(11), 13-25. [In Japanese]
  97. Takanashi, K. and Nakashima, M. (1987), "Japanese activities on on-line testing", J. Eng. Mech., 113(7), 1014-1032. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:7(1014)
  98. Tait, M.J., Isyumov, N. and El Damatty, A.A. (2008), "Performance of tuned liquid dampers", J. Eng. Mech., 134(5), 417-427. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:5(417).
  99. Tang, Y. and Lou, M. (2017), "New unconditionally stable explicit integration algorithm for real-time hybrid testing", J. Eng. Mech., 143(7). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001235.
  100. Tian, J., Symans, M.D., Pang, W., Ziaei, E. and van de Lindt, J.W. (2015), "Application of energy dissipation devices for seismic protection of soft-story wood-frame buildings in accordance with FEMA guidelines", J. Struct. Eng., 142(4). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001269.
  101. Tran, T.T. and Kim, D. (2017), "A CFD study of coupled aerodynamic-hydrodynamic loads on a semisubmersible floating offshore wind turbine", Wind Energy, 21(1). https://doi.org/10.1002/we.2145.
  102. Ueland, E.S., Skjetne, R. and Vilsen, S.A. (2018), "Force actuated real-time hybrid model testing of a moored vessel: A case study investigating force errors", IFAC-PapersOnLine, 51(29), 74-79. https://doi.org/10.1016/j.ifacol.2018.09.472.
  103. Van der Woude, C. and Narasimhan, S. (2014), "A study on vibration isolation for wind turbine structures", Eng. Struct., 60, 223-234. https://doi.org/10.1016/j.engstruct.2013.12.028.
  104. Vilsen, S.A., Sauder, T., Sorensen, A.J. and Fore, M. (2019), "Method for real-time hybrid model testing of ocean structures: Case study on horizontal mooring systems", Ocean Eng., 172, 46-58. https://doi.org/10.1016/j.oceaneng.2018.10.042
  105. Wang, T., McCormick, J. and Nakashima, M. (2008), "Verification test of a hybrid test system with distributed column base tests", Proceedings of the 18th Analysis and Computation Specialty Conference, Vancouver, Canada, April.
  106. Wang, X., Gao, W., Gao, T., Li, Q., Wang, J. and Li, X. (2018), "Robust model reference adaptive control design for wind turbine speed regulation simulated by using FAST", J. Energy Eng., 144(2). https://doi.org/10.1061/(ASCE)EY.1943-7897.0000520.
  107. Wang, Z., Zhao, Y., Li, F. and Jiang, J. (2013), "Extreme dynamic responses of MW-level wind turbine tower in the strong typhoon considering wind-rain loads", Math. Problem. Eng., 2013. https://doi.org/10.1155/2013/512530.
  108. Watanabe, E., Kitada, T., Sugiura, K. and Nagata, K. (2001), "Parallel Pseudo-Dynamic Seismic Loading Test on Elevated Bridge System Through the Internet", Proceedings of the 8th East Asia-Pacific Conference on Structural Engineering and Construction, Singapore, December.
  109. Yalla, S.K. and Kareem, A. (2007), "Dynamic load simulator: Actuation strategies and applications", J. Eng. Mech., 133(8), 855-863. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:8(855).
  110. Zhang, Z., Li, J. and Zhuge, P. (2014a), "Failure analysis of largescale wind power structure under simulated typhoon", Math. Problem. Eng., 2014. https://doi.org/10.1155/2014/486524.
  111. Zhang, Z., Nielsen, S.R.K., Blaabjerg, F. and Zhao, D. (2014b), "Dynamics and control of lateral tower vibrations in offshore wind turbines by means of active generator torque", Energies, 7. https://doi.org/10.3390/en7117746.
  112. Zhang, Z., Nielsen, S.R.K., Basu, B. and Li, J. (2015), "Nonlinear modeling of tuned liquid dampers (TLDs) in rotating wind turbines blades from damping edgewise vibrations", J. Fluid. Struct., 59, 252-269. https://doi.org/10.1016/j.jfluidstructs.2015.09.006.
  113. Zhang, Z., Staino, A., Basu, B. and Nielsen, S.R.K. (2016), "Performance evaluation of full-scale tuned liquid dampers (TLDs) for vibration control of large wind turbines using realtime hybrid testing", Eng. Struct., 126, 417-431. https://doi.org/10.1016/j.engstruct.2016.07.008.
  114. Zhang, R., Zhao, Z. and Dai, K. (2019), "Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system", Eng. Struct., 180, 29-39. https://doi.org/10.1016/j.engstruct.2018.11.020.
  115. Zhao, Z., Dai, K., Camara, A., Bitsuamlak, G., and Sheng, C. (2019), "Wind turbine tower failure modes under seismic and wind loads", J. Perform. Constr. Fac., 33(2), 04019015. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001279.