DOI QR코드

DOI QR Code

Numerical Simulation of Subaerial and Submarine Landslides Using the Finite Volume Method in the Shallow Water Equations with (b, s) Coordinate

(b, s) 좌표로 표현된 천수방정식에 유한체적법을 사용하여 해상 및 해저 산사태 수치모의

  • Pham, Van Khoi (Department of Civil & Environmental Engineering, Sejong University and Faculty of Civil Engineering, Vietnam Maritime University) ;
  • Lee, Changhoon (Department of Civil & Environmental Engineering, Sejong University) ;
  • Vu, Van Nghi (Faculty of Transportation Engineering, HoChiMinh City University of Transport)
  • Received : 2019.08.19
  • Accepted : 2019.08.26
  • Published : 2019.08.31

Abstract

A model of landslides is developed using the shallow water equations to simulate time-dependent performance of landslides. The shallow water equations are derived using the (b, s) coordinate system which can be applied in both river and ocean. The finite volume scheme employing the HLL approximate Riemann solver and the total variation diminishing (TVD) limiter is applied to deal with the numerical discontinuities occurring in landslides. For dam-break water flow and debris flow, numerical results are compared with analytical solutions and experimental data and good agreements are observed. The developed landslide model is successfully applied to predict subaerial and submarine landslides. It is found that the subaerial landslide propagates faster than the submarine landslide and the speed of propagation becomes faster with steeper bottom slope and less bottom roughness.

산사태의 시간에 따른 전파를 모의하기 위해서 천수방정식을 사용하여 산사태 수치모형을 개발하였다. 하천 및 해양에서의 산사태에 모두 해석이 가능하도록 (b, s) 좌표로 표현된 천수방정식을 개발하였다. 산사태에서 발생하는 수치적인 불연속성을 극복하기 위해서 HLL approximate Riemann solver와 total variation diminishing (TVD) limiter를 사용한 유한체적법을 사용하였다. 댐파괴 흐름와 토석류의 각 경우에 수치해석을 수행한 결과를 해석해와 실험자료와 비교를 하였다. 그 결과 서로 유사함을 확인되었다. 본 모형을 사용하여 해상 산사태와 해저 산사태를 성공적으로 모의하였다. 해저 산사태에 비해 해상 산사태의 전파속도가 더 빠르고, 바닥경사가 급할수록 또는 거칠기가 작을수록 산사태 전파속도가 더 빨라짐을 확인하였다.

Keywords

References

  1. Denlinger, R.P. and Iverson, R.M. (2001). Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests. Journal of Geophysical Research: Solid Earth, 106, 553-566. https://doi.org/10.1029/2000JB900330.
  2. Erduran, K.S., Kutija, V. and Hewett, C.J.M. (2002). Performance of finite volume solutions to the shallow water equations with shock-capturing schemes. International Journal for Numerical Methods in Fluids, 40, 1237-1273. https://doi.org/10.1002/fld.402.
  3. Horrillo, J., Wood, A., Kim, G.-B. and Parambath, A. (2013). A simplified 3-D Navier-Stokes numerical model for landslidetsunami: Application to the Gulf of Mexico: A Simplified 3-D Tsunami Numerical Model. Journal of Geophysical Research: Oceans, 118, 6934-6950. https://doi.org/10.1002/2012JC008689.
  4. Imran, J., Parker, G., Locat, J. and Lee, H. (2001). 1D Numerical Model of Muddy Subaqueous and Subaerial Debris Flows. Journal of Hydraulic Engineering, 127, 959-968. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:11(959).
  5. Iverson, R.M. (2003). The debris-flow rheology myth. Debris Flow Mechanics and Mitigation Conference. Mill Press, Davos, 303-314.
  6. Iverson, R.M. (2015). Scaling and design of landslide and debrisflow experiments. Geomorphology, 244, 9-20. https://doi.org/10.1016/j.geomorph.2015.02.033.
  7. Iverson, R.M., Logan, M., LaHusen, R.G. and Berti, M. (2010). The perfect debris flow? Aggregated results from 28 large-scale experiments. Journal of Geophysical Research, 115, F03005. https://doi.org/10.1029/2009JF001514.
  8. Jakob, M., Anderson, D., Fuller, T., Hungr, O. and Ayotte, D. (2000). An unusually large debris flow at Hummingbird Creek, Mara Lake, British Columbia. Canadian Geotechnical Journal, 37, 1109-1125. https://doi.org/10.1139/t00-013
  9. Liang, Q. and Marche, F. (2009). Numerical resolution of well-balanced shallow water equations with complex source terms. Advances in Water Resources, 32, 873-884. https://doi.org/10.1016/j.advwatres.2009.02.010.
  10. Major, J.J. (1997). Depositional Processes in Large-Scale Debris-Flow Experiments. The Journal of Geology, 105, 345-366. https://doi.org/10.1086/515930.
  11. Mangeney, A., Heinrich, P. and Roche, R. (2000). Analytical Solution for Testing Debris Avalanche Numerical Models. Pure and Applied Geophysics, 157, 1081-1096. https://doi.org/10.1007/s000240050018.
  12. McDougall, S., Boultbee, N., Hungr, O., Stead, D. and Schwab, J.W. (2006). The Zymoetz River landslide, British Columbia, Canada: description and dynamic analysis of a rock slide-debris flow. Landslides, 3, 195-204. https://doi.org/10.1007/s10346-006-0042-3.
  13. Mikos, M., Fazarinc, R., Majes, B., Rajar, R., Zagar, D., Krzyk, M., Hojnik, T. and Cetina, M. (2006). Numerical simulation of debris flows triggered from the Strug rock fall source area, W Slovenia. Natural Hazards and Earth System Science, 6, 261-270. https://doi.org/10.5194/nhess-6-261-2006.
  14. Naef, D., Rickenmann, D., Rutschmann, P. and McArdell, B.W. (2006). Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Natural Hazards and Earth System Science, 6, 155-165. https://doi.org/10.5194/nhess-6-155-2006.
  15. Paik, J. (2015). A high resolution finite volume model for 1D debris flow. Journal of Hydro-environment Research, 9, 145-155. https://doi.org/10.1016/j.jher.2014.03.001.
  16. Rzadkiewicz, S.A., Mariotti, C. and Heinrich, P. (1997). Numerical Simulation of Submarine Landslides and Their Hydraulic Effects. Journal of Waterway, Port, Coastal, and Ocean Engineering, 123, 149-157. https://doi.org/10.1061/(ASCE)0733-950X(1997)123:4(149).
  17. Sassa, K., Dang, K., Yanagisawa, H. and He, B. (2016). A new landslide-induced tsunami simulation model and its application to the 1792 Unzen-Mayuyama landslide-and-tsunami disaster. Landslides, 13, 1405-1419. https://doi.org/10.1007/s10346-016-0691-9.
  18. Stansby, P.K., Chegini, A. and Barnes, T.C.D. (1998). The initial stages of dam-break flow 18.
  19. Tappin, D.R., Grilli, S.T., Harris, J.C., Geller, R.J., Masterlark, T., Kirby, J.T., Shi, F., Ma, G., Thingbaijam, K.K.S. and Mai, P.M. (2014). Did a submarine landslide contribute to the 2011 Tohoku tsunami? Marine Geology, 357, 344-361. https://doi.org/10.1016/j.margeo.2014.09.043.
  20. Toro, E.F. (2001). Shock-capturing methods for free-surface shallow flows. John Wiley & Sons, LTD.
  21. Van Tien, P., Sassa, K., Takara, K., Fukuoka, H., Dang, K., Shibasaki, T., Ha, N.D., Setiawan, H. and Loi, D.H. (2018). Formation process of two massive dams following rainfall-induced deep-seated rapid landslide failures in the Kii Peninsula of Japan. Landslides, 15, 1761-1778. https://doi.org/10.1007/s10346-018-0988-y.
  22. Voellmy, A. (1955). Uber die Zertorungskraft von Lawinen. Schweizerische Bauzeitung. Schweizerische Bauzeitung, 73, 212-285.
  23. Yavari-Ramshe, S., Ataie-Ashtiani, B. and Sanders, B.F. (2015). A robust finite volume model to simulate granular flows. Computers and Geotechnics, 66, 96-112. https://doi.org/10.1016/j.compgeo.2015.01.015.