Acknowledgement
Supported by : CDCHT-UCLA
References
- Akbas, B. (2006), "A neural network model to assess the hysteretic energy demand in steel moment resisting frames", Struct. Eng. Mech., 23(2), 177-193. https://doi.org/10.12989/sem.2006.23.2.177.
- Amani, J. and Moeini, R. (2012), "Prediction of shear strength of reinforced concrete beams using adaptive neuro-fuzzy inference system and artificial neural network", Scientia Iranica, 19(2), 242-248. https://doi.org/10.1016/j.scient.2012.02.009.
- ASTM E564-06 (2018), Standard Practice for Static Load Test for Shear Resistance of Framed Walls for Buildings, ASTM International, West Conshohocken, PA, USA.
- ASTM E72-15 (2015), Standard Test Methods of Conducting Strength Tests of Panels for Building Construction, ASTM International, West Conshohocken, PA, USA.
- Azqandi, M., Nooredin, N. and Ghoddosian, A. (2018), "Optimization of spring back in U-die bending process of sheet metal using ANN and ICA", Struct. Eng. Mech., 65(4), 447-452. https://doi.org/10.12989/sem.2018.65.4.447.
- Darendeli, M.B. (2001), "Development of a new family of normalized modulus reduction and material damping curves", Ph.D. Dissertation, The University of Texas at Austin, USA. http://hdl.handle.net/2152/10396.
- Erdem, H. (2017), "Predicting the moment capacity of RC slabs with insulation materials exposed to fire by ANN", Struct. Eng. Mech., 64(3), 339-346. https://doi.org/10.12989/sem.2017.64.3.339.
- Freitag, S., Cao, B.T., Ninic, J. and Meschke, G. (2018), "Recurrent neural networks and proper orthogonal decomposition with interval data for real-time predictions of mechanised tunnelling processes", Comput. Struct., 207, 258-273. https://doi.org/10.1016/j.compstruc.2017.03.020.
- Guerrero, N., Marante, M.E., Picon, R. and Florez-Lopez, J. (2007), "Model of local buckling in steel hollow structural elements subjected to biaxial bending", J. Consruct. Steel Res., 63(6), 779-790. https://doi.org/10.1016/j.jcsr.2006.08.006.
- Hadi, M.N.S. (2003), "Neural networks applications in concrete structures", Comput. Struct., 81(6), 373-381. https://doi.org/10.1016/S0045-7949(02)00451-0.
- Haj-Ali, R., Kim, H.K., Koh, S.W., Saxena, A. and Tummala, R. (2008), "Nonlinear constitutive models from nanoindentation tests using artificial neural networks", J. Plasticity, 24(3), 371-396. https://doi.org/10.1016/j.ijplas.2007.02.001.
- Hashemi, S.J., Razzaghi, J., Moghadam, A.S. and Lourenco, P.B. (2018), "Cyclic testing of steel frames infilled with concrete sandwich panels", Archives Civil Mech. Eng., 18(2), 557-572. https://doi.org/10.1016/j.acme.2017.10.007.
- Mansour, M.Y., Dicleli, M., Lee, J.Y. and Zhang, J. (2004), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Eng. Struct., 26(6), 781-799. https://doi.org/10.1016/j.engstruct.2004.01.011.
- Mariani, C., Venini, P. and Nascimbene, R. (2003), "Neural networks in computational damage mechanics", Comput. Fluid Solid Mech., 426-428. https://doi.org/10.1016/B978-008044046-0.50105-6.
- De Matteis, G. and Landolfo, R. (1999), "Structural behaviour of sandwich panel shear walls: An experimental analysis", Mater. Struct., 32(5), 331-341. https://doi.org/10.1007/BF02479624.
- Mohamed, M., Hussein, R., Abutunis, A., Huo, Z., Chandrashekhara, K. and Sneed, L. (2016), "Manufacturing and evaluation of polyurethane composite structural insulated panels", J. Sandwich Struct. Mater., 18(6), 769-789. https://doi.org/10.1177/1099636215626597.
- Pendharkar, U., Chaudhary, S. and Nagpal, A.K. (2011), "Prediction of moments in composite frames considering cracking and time effects using neural network models", Struct. Eng. Mech., 39(2), 267-285. https://doi.org/10.12989/sem.2011.39.2.267.
- Perdomo, M. E., Picon, R., Marante, M. E., Hild, F., Roux, S. and Florez-Lopez, J. (2013), "Experimental analysis and mathematical modeling of fracture in RC elements with any aspect ratio", Eng. Struct., 46, 407-416. https://doi.org/10.1016/j.engstruct.2012.07.005.
- Perera, R., Barchin, M., Arteaga, A. and Diego, A. De. (2010), "Prediction of the ultimate strength of reinforced concrete beams FRP-strengthened in shear using neural networks", Compos. Part B, 41(4), 287-298. https://doi.org/10.1016/j.compositesb.2010.03.003.
- Picon-Rodriguez, R., Quintero-Febres, C. and Florez-Lopez, J. (2007), "Modeling of cyclic bond deterioration in RC beamcolumn connections", Struct. Eng. Mech., 26(5), 569-589. https://doi.org/10.12989/sem.2007.26.5.569.
- Poluraju, P. and Rao, G.A. (2014), "Behaviour of 3D-panels for structural applications under general loading: A state-of-theart", IJRET, 3(16), 173-181.
- Ramnavas, M.P., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2017), "Explicit expressions for inelastic design quantities in composite frames considering effects of nearby columns and floors", Struct. Eng. Mech., 64(4), 437-447. https://doi.org/10.12989/sem.2017.64.4.437.
- Reuter, U., Sultan, A. and Reischl, D.S. (2018), "A comparative study of machine learning approaches for modeling concrete failure surfaces", Adv. Eng. Software, 116, 67-79. https://doi.org/10.1016/j.advengsoft.2017.11.006.
- Rosenblatt, F. (1958), "The perceptron: A probabilistic model for information storage and organization in the brain", Psychological Rev., 65(6), 386-408. http://dx.doi.org/10.1037/h0042519.
- Rotaru, F., Rosculet, R., Chirica, I. and Beznea, E.F. (2016), "Experimental Analysis of the Sandwich Composites Loaded to Mechanical Impact", Adv. Compos. Mater. Eng., 198-203. http://hdl.handle.net/123456789/2147.
- Taffese, W.Z. and Sistonen, E. (2017), "Machine learning for durability and service-life assessment of reinforced concrete structures: Recent advances and future directions", Automat. Construct., 77, 1-14. https://doi.org/10.1016/j.autcon.2017.01.016.
- Yavuz, G. (2016), "Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches", Struct. Eng. Mech., 57(4), 657-680. https://doi.org/10.12989/sem.2016.57.4.657.
- Yoon, K., Kim, D.N. and Lee, P.S. (2017), "Nonlinear torsional analysis of 3D composite beams using the extended St. Venant solution", Struct. Eng. Mech., 62(1), 33-42. https://doi.org/10.12989/sem.2017.62.1.033.
- Zopf, C. and Kaliske, M. (2017), "Numerical characterisation of uncured elastomers by a neural network based approach", Comput. Struct., 182, 504-525. https://doi.org/10.1016/j.compstruc.2016.12.012.
Cited by
- Estimating the compressive strength of HPFRC containing metallic fibers using statistical methods and ANNs vol.10, pp.6, 2019, https://doi.org/10.12989/acc.2020.10.6.479