DOI QR코드

DOI QR Code

Free vibration and buckling analyses of functionally graded annular thin sector plate in-plane loads using GDQM

  • Mohammadimehr, Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Afshari, Hasan (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Salemi, M. (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Torabi, K. (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Mehrabi, Mojtaba (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2018.11.21
  • Accepted : 2019.03.06
  • Published : 2019.09.10

Abstract

In the present study, buckling and free vibration analyses of annular thin sector plate made of functionally graded materials (FGMs) resting on visco-elastic Pasternak foundation, subjected to external radial, circumferential and shear in-plane loads is investigated. Material properties are assumed to vary along the thickness according to an power law with Poisson's ratio held constant. First, based on the classical plate theory (CPT), the governing equation of motion is derived using Hamilton's principle and then is solved using the generalized differential quadrature method (GDQM). Numerical results are compared to those available in the literature to validate the convergence and accuracy of the present approach. Finally, the effects of power-law exponent, ratio of radii, thickness of the plate, sector angle, and coefficients of foundation on the fundamental and higher natural frequencies of transverse vibration and critical buckling loads are considered for various boundary conditions. Also, vibration and buckling mode shapes of functionally graded (FG) sector plate have been shown in this research. One of the important obtained results from this work show that ratio of the frequency of FG annular sector plate to the corresponding values of homogeneous plate are independent from boundary conditions and frequency number.

Keywords

Acknowledgement

Supported by : University of Kashan

References

  1. Abdelaziz, H.H., Ait Amar Meziane, M., Bousahla, A.A., Tounsi, A., Hassan, S. and Salim, A. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel. Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693.
  2. Abualnour, M., Ahmed, H.M.S., Tounsi, A., Bedia, E.A.A. and Mahmoud S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.
  3. Adim, B., Hassaine Daouadji, T. and Abbes, B. (2016), "Buckling analysis of anti-symmetric cross-ply laminated composite plates under different boundary conditions", Appl. Mech., 52(6), 661-676. https://doi.org/10.1007/s10778-016-0787-x.
  4. Afshari, H. and Irani Rahaghi, M. (2018), "Whirling analysis of multi-span multi-stepped rotating shafts", J. Braz. Soci. Mech. Sci. Eng., 40(9), 424 . https://doi.org/10.1007/s40430-018-1351-x.
  5. Afshari, H. and Torabi, K. (2017), "A parametric study on flutter analysis of cantilevered trapezoidal FG sandwich plates", AUT. J. Mech. Eng., 1(2), 191-210 . http://dx.doi.org/10.22060/mej.2017.12329.5314.
  6. Akgoz, B. and Civalek, O. (2011), "Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories", J. Comput. Theory. Nano. Sci., 8, 1821-1827. https://doi.org/10.1166/jctn.2011.1888.
  7. Alipour, M.M. (2016), "Effects of elastically restrained edges on FG sandwich annular plates by using a novel solution procedure based on layerwise formulation", Arch. Civil. Mech. Engin., 16(4), 678-694. https://doi.org/10.1016/j.acme.2016.04.015.
  8. Ansari, R. and Torabi, J. (2016), "Nonlocal vibration analysis of circular double-layered graphene sheets resting on an elastic foundation subjected to thermal loading", Acta Mechanica Sinica, 32(5), 841-853. https://doi.org/10.1007/s10409-016-0574-2.
  9. Bakhadda, B., Bouiadjra, M.B., Bourada, F., Bousahla, A.A., Tounsi, A. and Hassan, S. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind. Struct., 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.311.
  10. Baltacioglu, A.K., Akgoz, B. and Civalek, O. (2010), "Nonlinear static response of laminated composite plates by discrete singular convolution method", Compos. Struct., 93, 53-161. https://doi.org/10.1016/j.compstruct.2010.06.005.
  11. Behera, L. and Chakraverty, S. (2015), "Application of differential quadrature method in free vibration analysis of nano beams based on various nonlocal theories", Comput. Math. Appl., 69(12), 1444-1462. https://doi.org/10.1016/j.camwa.2015.04.010.
  12. Belabed, Z., Bousahla, A.A., Ahmed, H.M.S., Tounsi, A. and Hassam, S. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthquake. Struct., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103.
  13. Bellman, R., Kashef, B.G. and Casti, J. (1972), "Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations", J. Comput. Phys., 10(1), 40-52. https://doi.org/10.1016/0021-9991(72)90089-7.
  14. Benchohra, M., Driz, H., Bekora, A., Tounsi, A., Bedia, E.A.A. and Hassan, S. (2018), "A new quasi-3D sinusoidal shear deformation theory for functionally graded plates", Struct. Eng. Mech., 65(1), 19-31. https://doi.org/10.12989/sem.2018.65.1.019.
  15. Bennoun, M., Ahmed, H.M.S. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater.Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088.
  16. Bert, C.W., Jang, S.K. and Striz, A.F. (1988), "Two new approximate methods for analyzing free vibration of structural components", AIAA J., 26(5), 612-618. https://doi.org/10.2514/3.9941
  17. Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: A review", Appl. Mech. Rev., 49(1), 1-28. https://doi.org/10.1115/1.3101882.
  18. Besseghier, A., Ahmed, H.M.S., Tounsi, A. and Hassan, S. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart. Struct. Syst., 19(6), 601-614. https://doi.org/10.12989/sss.2017.19.6.601.
  19. Bhaskara, L. and Kameswara, C. (2014), "Buckling of elastic circular plates with an elastically restrained edges against rotation and internal elastic ring support", Int. Appl. Mech., 51(4), 480-488. https://doi.org/10.1007/s10778-015-0709-3.
  20. Bouafia, K., Abdelhakim, K., Ahmed, H.M.S., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart. Struct. Sys., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115.
  21. Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and Hassan, S. (2018), "Improved HSDT accounting for effect of thickness stretching in advanced composite plates", Struct. Eng. Mech., 66(1), 61-73. https://doi.org/10.12989/SEM.2018.66.1.061
  22. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel. Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227.
  23. Bourada, F., Amara, K., Bousahla, A.A., Tounsi, A. and Hassan, S. (2018), "A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates", Struct. Engin. Mech., 68(6), 661-675. https://doi.org/10.12989/sem.2018.68.6.661.
  24. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Amina, Z. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind. Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
  25. Bousahla, A.A., Ahmed, H.M.S., Tounsi, A. and Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Method., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825.
  26. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Hassan, S. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313.
  27. Cho, J.R. and Oden, J.T. (2000), "Functionally graded material: a parametric study on thermal-stress characteristics using the Crank-Nicolson-Galerkin scheme", Comput. Method. Appl. Mech. Eng., 188(1-3), 17-38. https://doi.org/10.1016/S0045-7825(99)00289-3.
  28. Civalek, O. (2006), "The determination of frequencies of laminated conical shells via the discrete singular convolution method", J. Mech. Mater. Struct., 1, 163-182. http://dx.doi.org/10.2140/jomms.2006.1.163.
  29. Civalek, O. (2008), "Vibration analysis of conical panels using the method of discrete singular convolution", Commun. Numerical. Method. Engin., 24, 169-181. https://doi.org/10.1002/cnm.961.
  30. Civalek, O. (2013), "Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches", Compos. Part B., 50, 171-179. https://doi.org/10.1016/j.compositesb.2013.01.027.
  31. Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. Part B., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030.
  32. Demir, C., Mercan, K. and Civalek, O. (2016), "Determination of critical buckling loads of isotropic, FGM and laminated truncated conical panel", Compos. Part B., 94, 1-10. https://doi.org/10.1016/j.compositesb.2016.03.031.
  33. Dung, D.V., NGA, N.T. and Hoa, L.K. (2017), "Nonlinear stability of functionally graded material (FGM) sandwich cylindrical shell reinforced by FGM stiffeners in thermal environment", Appl. Math. Mech., 38(5), 647-670. https://doi.org/10.1007/s10483-017-2198-9.
  34. El-Haina, F., Bekora, A., Bousahla, A.A., Tounsi, A. and Hassan, S. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.
  35. Fadaee, M. (2015), "A novel approach for free vibration of circular/ annular sector plates using Reddy's third order shear deformation theory", Meccanica, 50(9), 2325-2351. https://doi.org/10.1007/s11012-015-0158-4.
  36. Fourn, H., Hassen, A.A., Bourada, M., Bousahla, A.A., Tounsi, A. and Hassan, S. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel. Compos. Struct., 27(1), 109-122. https://doi.org/10.12989/scs.2018.27.1.109.
  37. Hichem, B., Bakora, A., Tounsi, A., Bousahla, A.A. and Hassa, S. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel. Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/scs.2017.25.3.257.
  38. Karami, B., Janghorban, M. and Tounsi, A. (2018), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Walled Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025.
  39. Kim, C.S. and Dickinson, S.M. (1989), "On the free, transverse vibration of annular and circular, thin, sectorial plates subject to certain complicating effects", J. Sound. Vib., 134(3), 407-421. https://doi.org/10.1016/0022-460X(89)90566-X.
  40. Koizumi, M. (1997), "FGM activities in Japan", Compos. Engin., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
  41. Kumar, Y. and Lal, R. (2013), "Prediction of frequencies of free axisymmetric vibration of two-directional functionally graded annular plates on Winkler foundation", Europ. J. Mech. A/Solids., 42, 219-228. https://doi.org/10.1016/j.euromechsol.2013.06.001.
  42. Liang, X., Kou, H.L., Wang, L., Palmer, A.C., Wang, Z. and Liu, M. (2015), "Three-dimensional transient analysis of functionally graded material annular sector plate under various boundary conditions", Compos. Struct., 132, 584-596. https://doi.org/10.1016/j.compstruct.2015.05.066.
  43. Long, N.V., Quoc, T.H. and Tu, T.M. (2016), "Bending and free vibration analysis of functionally graded plates using new eightunknown shear deformation theory by finite-element method", J. Adv. Struct. Engin., 8(4), 391-399. https://doi.org/10.1007/s40091-016-0140-y.
  44. Mehrabian, M. and Golmakani, M.E. (2015), "Nonlinear bending analysis of radial-stiffened annular laminated sector plates with dynamic relaxation method", Comput. Math. Appl., 69(10), 1272-1302. https://doi.org/10.1016/j.camwa.2015.03.021.
  45. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel. Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157.
  46. Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Bedia, E.A.A. and Hassan, S. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177%2F1099636217698443. https://doi.org/10.1177/1099636217698443
  47. Mercan, K. and Civalek, O. (2016), "DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elasticmatrix", Compos. Struct., 143, 300-309. https://doi.org/10.1016/j.compstruct.2016.02.040.
  48. Mercan, K. and Civalek, O. (2017), "Buckling analysis of Silicon carbide nanotubes (SiCNTs) with surface effect and nonlocalelasticity using the method of HDQ", Compos. Part B., 114, 34-45. https://doi.org/10.1016/j.compositesb.2017.01.067.
  49. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852.
  50. Mirsalehi, M., Azhari, M. and Amoushahi, H. (2017), "Buckling and free vibration of the FGM thin micro-plate based on the modified strain gradient theory and the spline finite strip method", Europ. J. Mech. A/Solids., 61, 1-13. https://doi.org/10.1016/j.euromechsol.2016.08.008.
  51. Mohammadimehr, M. and Mehrabi, M. (2018), "Electro-thermomechanical vibration and stability analyses of double-bonded micro composite sandwich piezoelectric tubes conveying fluid flow", Appl. Math. Model., 60, 255-272. https://doi.org/10.1016/j.apm.2018.03.008.
  52. Mohammadimehr, M., Shabani Nejad, E. and Mehrabi, M. (2018), "Buckling and Vibration Analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores", Struct. Engin. Mech., 65(4), 491-504. https://doi.org/10.12989/sem.2018.65.4.491.
  53. Mohammadimehr, M. and Mehrabi, M. (2017), "Stability and vibration analysis of double-bonded micro composite sandwich cylindrical shells conveying fluid flow", Appl. Math. Model., 47, 685-709. https://doi.org/10.1016/j.apm.2017.03.054.
  54. Mohammadimehr, M., Farahi, M.J. and Alimirzaei, S. (2016), "Vibration and wave propagation analysis of twisted microbeam using strain gradient theory", Appl. Math. Mech., 37(10), 1375-1392. https://doi.org/10.1007/s10483-016-2138-9.
  55. Mohammadimehr, M., Saidi, A.R., Ghorbanpour Arani, A., Arefmanesh, A. and Han Q. (2010), "Torsional buckling of a DWCNT embedded on winkler and pasternak foundations using nonlocal theory", J. Mech. Sci. Tech., 24(6), 1289-1299. https://doi.org/10.1007/s12206-010-0331-6.
  56. Mohammadimehr, M., BabaAkbar Zarei, H., Parakandeh, A., Ghorbanpour Arani, A. (2017), "Vibration analysis of doublebonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and un-symmetric distributions of nanotubes under multi physical fields", Struct. Engin. Mech., 64(3), 361-379. https://doi.org/10.12989/sem.2017.64.3.361.
  57. Mohammadimehr M., Saidi A.R., Ghorbanpour Arani A., Arefmanesh A. and Han Q. (2011) "Buckling analysis of double-walled carbon nanotubes embedded in an elastic medium under axial compression using non-local Timoshenko beam theory", Proc. IMechE, Part C: J. Mech. Eng. Sci., 225(2), 498-506. https://doi.org/10.1177/2041298310392861.
  58. Ghorbanpour Arani A., Rahnama Mobarakeh M., Shams Sh. and Mohammadimehr M. (2012) "The effect of CNT volume fraction on the magneto-thermo-electro-mechanical behavior of smart nanocomposite cylinder", J. Mech. Sci. Technol. 26(8), 2565-2572. https://doi.org/10.1007/s12206-012-0639-5.
  59. Ghorbanpour Arani, A., Mohammadimehr, M., Saidi, A.R., Shogaei, S. and Arefmanesh, A. (2011), "Thermal buckling analysis of double-walled carbon nanotubes considering the small-scale length effect", Proc. IMechE, Part C, J. Mech. Eng. Sci., 225(1), 248-256. https://doi.org/10.1177/09544062JMES1975.
  60. Mohammadimehr, M., Rostami, R., Arefi, M., 2016, "Electroelastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT", Steel Compos. Struct., 20(3), 513-544. https://doi.org/10.12989/scs.2016.20.3.513.
  61. Mohammadimehr, M. and Rahmati, A.H. (2013), "Small scale effect on electro-thermo-mechanical vibration analysis of single-walled boron nitride nanorods under electric excitation", J. Eng. Environ. Sci., 37(1), 1-15.
  62. Mohammadimehr M. and Shahedi S. (2017) "High-order buckling and free vibration analysis of two types sandwich beam including AL or PVC-foam flexible core and CNTs reinforced nanocomposite face sheets using GDQM", Compos. Part B: Eng., 108, 91-107. https://doi.org/10.1016/j.compositesb.2016.09.040.
  63. Ghorbanpour Arani, A., Hashemian, M., Loghman, A. and Mohammadimehr, M. (2011), "Study of dynamic stability of the double-walled carbon nanotubes under axial loading embedded in an elastic medium by the energy method", J. Appl. Mech. Technical Physics, 52(5), 815-824. https://doi.org/10.1134/S0021894411050178.
  64. Powmya, A. and Narasimhan, M.C. (2015), "Free vibration analysis of axisymmetric laminated composite circular and annular plates using Chebyshev collocation", Int. J. Adv. Struct. Engin., 7(2), 129-141. https://doi.org/10.1007/s40091-015-0087-4.
  65. Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics (2nd edition), John Wiley & Sons Inc, New Jersey, USA.
  66. Satouri, S., Asanjarani, A. and Satouri, A. (2015), "Natural Frequency Analysis of 2D-FGM Sectorial Plate with Variable Thickness Resting on Elastic Foundation Using 2D-DQM", Int. J. Appl. Mech., 7(2). https://doi.org/10.1142/S1758825115500301.
  67. Shirmohammadi, F. and Bahrami, S. (2018), "Dynamic response of circular and annular circular plates using spectral element method", Appl. Math. Model., 53, 156-166. https://doi.org/10.1016/j.apm.2017.08.014.
  68. Swaminathan, K. and Sangeetha, D.M. (2017), "Thermal analysis of FGM plates - A critical review of various modelling techniques and solution methods", Compos. Struct., 160, 43-60. https://doi.org/10.1016/j.compstruct.2016.10.047.
  69. Talebitooti, M. (2013), "Three-dimensional free vibration analysis of rotating laminated conical shells: layerwise differential quadrature (LW-DQ) method", Arch. Appl. Mech., 83(5),765-781. https://doi.org/10.1007/s00419-012-0716-3.
  70. Thang, P.T., Nguyen-Thoi, T. and Lee, J. (2016), "Closed-form expression for nonlinear analysis of imperfect sigmoid-FGM plates with variable thickness resting on elastic medium", Compos. Struct., 143, 143-150. https://doi.org/10.1016/j.compstruct.2016.02.002.
  71. Torabi, K. and Afshari, H. (2017a), "Vibration analysis of a cantilevered trapezoidal moderately thick plate with variable thickness", Eng. Solid. Mech., 5(1), 71-92 . http://dx.doi.org/10.5267/j.esm.2016.7.001.
  72. Torabi, K., Afshari, H. and Haji Aboutalebi, F. (2017b), "Vibration and flutter analyses of cantilever trapezoidal honeycomb sandwich plates", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636217728746.
  73. Torabi, K. and Afshari, H. (2016), "Generalized differential quadrature method for vibration analysis of cantilever trapezoidal FG thick plate", J. Solid. Mech., 9(1), 184-203.
  74. Torabi, K., Afshari, H. and Haji Aboutalebi, F. (2014a), "A DQEM for transverse vibration analysis of multiple cracked non-uniform Timoshenko beams with general boundary conditions", Comput. Math. Appl., 67(3), 527-541. https://doi.org/10.1016/j.camwa.2013.11.010.
  75. Torabi, K., Afshari, H. and Heidari-Rarani, M. (2014b), "Free vibration analysis of a rotating non-uniform blade with multiple open cracks using DQEM", Uni. J. Mech. Eng., 2(3), 101-111 . https://doi.org/10.13189/ujme.2014.020304.
  76. Torabi, K., Afshari, H. and Heidari-Rarani, M. (2013), "Free vibration analysis of a non-uniform cantilever Timoshenko beam with multiple concentrated masses using DQEM", Eng. Solid. Mech., 1(1), 9-20 . http://dx.doi.org/10.5267/j.esm.2013.06.002.
  77. Wang, Y.G., Song, H.F., Lin, W.H. and Xu, L. (2017), "Large deflection analysis of functionally graded circular microplates with modified couple stress effect", J. Braz. Soci. Mech. Sci. Engin., 39(3), 981-991. https://doi.org/10.1007/s40430-016-0564-0.
  78. Wu, Ch.P., Li, W.Ch. (2017), "Free vibration analysis of embedded single-layered nanoplate and graphene sheets by using the multiple time scale method", Comput. Math. Appl, 73(5), 838-854. https://doi.org/10.1016/j.camwa.2017.01.014.
  79. Wu, Y., Xing, Y. and Liu, B. (2018), "Analysis of isotropic and composite laminated plates and shells using a differential quadrature hierarchical finite element method", Compos. Struct., 205, 11-25. https://doi.org/10.1016/j.compstruct.2015.07.101.
  80. Xiang, Y., Ma, Y.F., Kitiornchai, S., Lim, C.W. and Lau, C.W.H. (2002), "Exact solutions for vibration of cylindrical shells with intermidiate ring supports", Int. J. Mech. Sci., 44, 1907-1924. https://doi.org/10.1016/S0020-7403(02)00071-1.
  81. Yahia, S.A., Hassen, A.A., Ahmed, H.M.S. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. http://dx.doi.org/10.12989/sem.2015.53.6.1143.
  82. Yakhno, V.G., Ozdek, D. (2014), "Computation of the Green's function for the transverse vibration of a composite circular membrane", J. Engin. Math, 87(1), 187-205. https://doi.org/10.1007/s10665-013-9673-2.
  83. Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S.R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Engin., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519.
  84. Yousefitabar, M. and Matapouri, M.Kh. (2017), "Thermally induced buckling of thin annular FGM plates", J. Braz. Soci, Mech. Sci. Engin, 39(3), 969-980. https://doi.org/10.1007/s40430-016-0555-1.
  85. Zemri, A., Ahmed, H.M.S., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Int. J. Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693.
  86. Zhong, H. and Yu, T. (2009), "A weak form quadrature element method for plane elasticity problems", Appl. Math. Model., 33(10), 3801-3814. https://doi.org/10.1016/j.apm.2008.12.007.
  87. Zhou, Z.H., Wong, K.W., Xu, X.S. and Leung, A.Y.T. (2011), "Natural vibration of circular and annular thin plates by Hamiltonian approach", J. Sound. Vib, 330(5), 1005-1010. https://doi.org/10.1016/j.jsv.2010.09.015.

Cited by

  1. Magneto-mechanical vibration analysis of single-/three-layered micro-Timoshenko porous beam and graphene platelet as reinforcement based on modified strain gradient theory and differential quadrature vol.27, pp.15, 2021, https://doi.org/10.1177/1077546320949083
  2. Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization vol.11, pp.2, 2019, https://doi.org/10.12989/anr.2021.11.2.203