DOI QR코드

DOI QR Code

FE modelling of low velocity impact on RC and prestressed RC slabs

  • Ganesan, Partheepan (Department of Civil Engineering, MVGR College of Engineering) ;
  • Kumar, S. Venkata Sai (Department of Civil Engineering, Baba Institute of Technology and Sciences)
  • 투고 : 2018.06.07
  • 심사 : 2019.04.17
  • 발행 : 2019.09.10

초록

The present study deals with the simulation of low velocity impact on prestressed and reinforced concrete (RC) slabs supported with different end conditions. The prestress is pre-applied on the RC slab in an analytical approach for the prestressed slab. RC slabs with dimensions $500{\times}600{\times}60mm$, $500{\times}600{\times}80mm$ and $500{\times}600{\times}120mm$ were used by changing support condition in two different ways; (i) Opposite sides simply supported, (ii) Adjacent sides simply supported with opposite corner propped. Deflection response of these specimens were found for the impact due to three different velocities. The effect of grade of concrete on deflection due to the impact of these slabs were also studied. Deflection result of $500{\times}500{\times}50mm$ slab was calculated numerically and compared the result with the available experimental result in literature. Finite element analyses were performed using commercially available ANSYS 16.2 software. The effectiveness of prestressing on impact resistant capacity of RC slabs are demonstrated by the way of comparing the deflection of RC slabs under similar impact loadings.

키워드

참고문헌

  1. Abdel-Kader, M. and Fouda, A. (2014), "Effect of reinforcement on the response of concrete panels to impact of hard projectiles", J. Impact Eng., 63, 1-17. https://doi.org/10.1016/j.ijimpeng.2013.07.005.
  2. Ali, M.A.E.M, Soliman, A.M and Nehdi, M.L. (2017), "Hybridfiber reinforced engineered cementitious composite under tensile and impact loading", Mater. Design, 117, 139-149. https://doi.org/10.1016/j.matdes.2016.12.047.
  3. Almusallam, T.H., Abadel, A.A., Al-Salloum, Y.A., Siddiqui, N.A. and Abbas, H. (2015), "Effectiveness of hybrid-fibers in improving the impact resistance of RC slabs", J. Impact Eng., 81, 61-73. https://doi.org/10.1016/j.ijimpeng.2015.03.010.
  4. Almusallam, T.H., Siddiqui, N.A., Iqbal, R.A. and Abbas, H. (2013), "Response of hybrid-fiber reinforced concrete slabs to hard projectile impact", J. Impact Eng., 58, 17-30. https://doi.org/10.1016/j.ijimpeng.2013.02.005.
  5. Anil, O., Kantar, E. and Yilmaz, M.C. (2015), "Low velocity impact behavior of RC slabs with different support types", Construct. Build. Mater., 93, 1078-1088. https://doi.org/10.1016/j.conbuildmat.2015.05.039.
  6. Bi, K. and Hao, H. (2013), "Numerical simulation of pounding damage to bridge structures under spatially varying ground motions", Eng. Struct., 46, 62-76. https://doi.org/10.1016/j.engstruct.2012.07.012.
  7. Dey, V., Bonakdar, A. and Mobasher, B. (2014), "Low-velocity flexural impact response of fiber-reinforced aerated concrete", Cement Concrete Compos., 49, 100-110. https://doi.org/10.1016/j.cemconcomp.2013.12.006.
  8. Eftekhari, M. and Mohammad, S. (2016), "Multiscale dynamic fracture behavior of the carbon nanotube reinforced concrete under impact loading", J. Impact Eng., 87, 55-64. https://doi.org/10.1016/j.ijimpeng.2015.06.023.
  9. Elavarasi, D. and Mohan, K.S.R. (2018), "On low-velocity impact response of SIFCON slabs under drop hammer impact loading", Construct. Build. Mater., 160, 127-135. https://doi.org/10.1016/j.conbuildmat.2017.11.013.
  10. Farnam, Y., Mohammad, S. and Shekarchi, M. (2010), "Experimental and numerical investigations of low velocity impact behavior of high-performance fiber-reinforced cementbased composite", J. Impact Eng., 37(2), 220-229. https://doi.org/10.1016/j.ijimpeng.2009.08.006.
  11. Foti, D. and Paparella, F. (2014), "Impact behavior of structural elements in concrete reinforced with PET grids", Mech. Res. Communication., 57, 57-66. https://doi.org/10.1016/j.mechrescom.2014.02.007.
  12. Hognestad, E., Hanson, N.W. and McHenry, D. (1956), "Stress distribution in ultimate strength design", J. American Concrete Institute, 52, 1305-1330.
  13. Kang, K. and Kim, J. (2017), "Response of a steel column-footing connection subjected to vehicle impact", Struct. Eng. Mech., 63(1), 125-136. https://doi.org/10.12989/sem.2017.63.1.125.
  14. Kh, H.M., Ozakca, M. and Ekmekyapar, T. (2017), "Nonlinear FE modelling and parametric study on flexural performance of ECC beams", Struct. Eng. Mech., 62(1), 21-31. https://doi.org/10.12989/sem.2017.62.1.021.
  15. Kumar, V., Iqbal, M.A. and Mittal, A.K. (2018), "Experimental investigation of prestressed and reinforced concrete plates under falling weight impactor", Thin Wall Struct., 126, 106-116. https://doi.org/10.1016/j.tws.2017.06.028.
  16. Li, J., Wu, C. and Liu, Z. (2018), "Comparative evaluation of steel wire mesh, steel fiber and high-performance polyethylene fiber reinforced concrete slabs in blast tests", Thin Wall Struct., 126, 117-126. https://doi.org/10.1016/j.tws.2017.05.023.
  17. Liu, J., Wu, C., Li, J., Su, Y., Shao, R., Liu, Z. and Chen, G. (2017), "Experimental and numerical study of reactive powder concrete reinforced with steel wire mesh against projectile penetration", J. Impact Eng., 109, 131-149. https://doi.org/10.1016/j.ijimpeng.2017.06.006.
  18. Luccioni, B., Isla, F., Codina, R., Ambrosini, D. and Torrijos, M.C. (2017), "Effect of steel fibers on static and blast response of high strength concrete", J. Impact Eng., 107, 23-37. https://doi.org/10.1016/j.ijimpeng.2017.04.027.
  19. Maca, P., Sovjak, R. and Konvalinka, P. (2014), "Mix design of UHPFRC and its response to projectile impact", J. Impact Eng., 63, 158-163. https://doi.org/10.1016/j.ijimpeng.2013.08.003.
  20. Mastali, M., Dalvand, A. and Sattarifard, A.R. (2016), "The impact resistance and mechanical properties of reinforced selfcompacting concrete with recycled glass fibre reinforced polymers", J. Cleaner Product., 124, 312-324. https://doi.org/10.1016/j.jclepro.2016.02.148.
  21. Mastali, M., Naghibdehi, M.G., Naghipour, M. and Rabiee, S.M. (2015), "Experimental assessment of functionally graded reinforced concrete (FGRC) slabs under drop weight and projectile impacts", Construct. Build. Mater., 95, 296-311. https://doi.org/10.1016/j.conbuildmat.2015.07.153.
  22. Mohammad, H., Abdul Awal, A.S.M. and Mohd Yatim, J.B. (2017), "The impact resistance and mechanical properties of concrete reinforced with waste polypropylene carpet fibers", Construct. Build. Mater., 143, 147-157. https://doi.org/10.1016/j.conbuildmat.2017.03.109.
  23. Ngo, T., Mendis, P. and Krauthammer, T. (2007), "Behavior of ultrahigh-strength prestressed concrete panels subjected to blast loading", J. Struct. Eng., 133, 1582-1590. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:11(1582).
  24. Ngo, T.T. and Kim, D.J. (2018), "Shear stress versus strain responses of ultra-high-performance fiber-reinforced concretes at high strain rates", J. Impact Eng., 111, 187-198. https://doi.org/10.1016/j.ijimpeng.2017.09.010.
  25. Nicolaides, D., Kanellopoulos, A., Savva, P. and Petrou, M. (2015), "Experimental field investigation of impact and blast load resistance of Ultra High Performance Fibre Reinforced Cementitious Composites (UHPFRCCs)", Construct. Build. Mater., 95, 566-574. https://doi.org/10.1016/j.conbuildmat.2015.07.141.
  26. Ong, K.C.G, Basheerkhan, M. and Paramasivam, P. (1999), "Resistance of fibre concrete slabs to low velocity projectile impact", Cement Concrete Compos., 21(5-6), 391-401. https://doi.org/10.1016/S0958-9465(99)00024-4.
  27. Peng, Y., Wu, H., Fang, Q., Liu, J.Z. and Gong, Z.M. (2016), "Residual velocities of projectiles after normally perforating the thin ultra-high performance steel fiber reinforced concrete slabs", J. Impact Eng., 97, 1-9. https://doi.org/10.1016/j.ijimpeng.2016.06.006.
  28. Pham, T.M. and Hao, H. (2016), "Review of concrete structures strengthened with FRP against impact loading", Structures, 7, 59-70. https://doi.org/10.1016/j.istruc.2016.05.003.
  29. Prakash, A., Srinivasan, S.M. and Mohan Rao, A.R. (2015), "Numerical investigation on steel fibre reinforced cementitious composite panels subjected to high velocity impact loading", Mater. Design, 83, 164-175. https://doi.org/10.1016/j.matdes.2015.06.001.
  30. Prem, P.R., Verma, M., Murthy, A.R., Rajasankar, J. and Bharatkumar, B.H. (2017), "Numerical and theoretical modelling of low velocity impact on UHPC panels", Struct. Eng. Mech., 63(2), 107-115. https://doi.org/10.12989/sem.2017.63.2.207.
  31. Rajai, Z., Al-Rousan, M., Alhassan, A. and Al-Salman, H. (2017), "Impact resistance of polypropylene fiber reinforced concrete two-way slabs", Struct. Eng. Mech., 62(3), 373-380. https://doi.org/10.12989/sem.2017.62.3.373.
  32. Rajput, A. and Iqbal, M.A. (2017), "Ballistic performance of plain, reinforced and pre-stressed concrete slabs under normal impact by an ogival-nosed projectile", J. Impact Eng., 110, 57-71. https://doi.org/10.1016/j.ijimpeng.2017.03.008.
  33. Ramakrishna, G. and Sundararajan, T. (2005), "Impact strength of a few natural fibre reinforced cement mortar slabs: A comparative study", Cement Concrete Compos., 27(5), 547-553. https://doi.org/10.1016/j.cemconcomp.2004.09.006.
  34. Ranade, R., Li, V.C., Heard, W.F. and Williams, B.A. (2017), "Impact resistance of high strength-high ductility concrete", Cement Concrete Res., 98, 24-35. https://doi.org/10.1016/j.cemconres.2017.03.013.
  35. Rao, H.S., Ghorpade, V.G., Ramana, N.V. and Gnaneswar, K. (2010), "Response of SIFCON two-way slabs under impact loading", J. Impact Eng., 37(4), 452-458. https://doi.org/10.1016/j.ijimpeng.2009.06.003.
  36. Suaris, W. and Shah, S.P. (1982), "Strain-rate effects in fibrereinforced concrete subjected to impact and impulsive loading", Composites, 13(2), 153-159. https://doi.org/10.1016/0010-4361(82)90052-0.
  37. Tabatabaei, Z.S., Volz, J.S., Keener, D.I. and Gliha, B.P. (2014), "Comparative impact behavior of four long carbon fiber reinforced concretes", Mater. Design, 55, 212-223. https://doi.org/10.1016/j.matdes.2013.09.048.
  38. Teng, T.L., Chu, Y.A., Chang, F.A. and Chin, H.S. (2004), "Simulation model of impact on reinforced concrete", Cement Concrete Res., 34(11), 2067-2077. https://doi.org/10.1016/j.cemconres.2004.03.019.
  39. Teng, T.L., Chu, Y.A., Chang, F.A. and Chin, H.S. (2005), "Numerical analysis of oblique impact on reinforced concrete", Cement Concrete Compos., 27, 481-492. https://doi.org/10.1016/j.cemconcomp.2004.05.005.
  40. Wang, W. and Chouw, N. (2017), "The behaviour of coconut fiber reinforced concrete (CFRC) under impact loading", Construct. Build. Mater., 134, 452-461. https://doi.org/10.1016/j.conbuildmat.2016.12.092.
  41. Yoo, D.Y., Banthia, N. and Yoon, Y.S. (2017), "Impact resistance of reinforced ultra-high-performance concrete beams with different steel fibers", ACI Struct. J., 114(1), 113-124. https://doi.org/10.14359/51689430
  42. Yu, R., Beers, L., Spiesz, P. and Brouwers, H.J.H. (2016), "Impact resistance of a sustainable Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) under pendulum impact loadings", Construct. Build. Mater., 107, 203-215. https://doi.org/10.1016/j.conbuildmat.2015.12.157.