참고문헌
- Abdel-Kader, M. and Fouda, A. (2014), "Effect of reinforcement on the response of concrete panels to impact of hard projectiles", J. Impact Eng., 63, 1-17. https://doi.org/10.1016/j.ijimpeng.2013.07.005.
- Ali, M.A.E.M, Soliman, A.M and Nehdi, M.L. (2017), "Hybridfiber reinforced engineered cementitious composite under tensile and impact loading", Mater. Design, 117, 139-149. https://doi.org/10.1016/j.matdes.2016.12.047.
- Almusallam, T.H., Abadel, A.A., Al-Salloum, Y.A., Siddiqui, N.A. and Abbas, H. (2015), "Effectiveness of hybrid-fibers in improving the impact resistance of RC slabs", J. Impact Eng., 81, 61-73. https://doi.org/10.1016/j.ijimpeng.2015.03.010.
- Almusallam, T.H., Siddiqui, N.A., Iqbal, R.A. and Abbas, H. (2013), "Response of hybrid-fiber reinforced concrete slabs to hard projectile impact", J. Impact Eng., 58, 17-30. https://doi.org/10.1016/j.ijimpeng.2013.02.005.
- Anil, O., Kantar, E. and Yilmaz, M.C. (2015), "Low velocity impact behavior of RC slabs with different support types", Construct. Build. Mater., 93, 1078-1088. https://doi.org/10.1016/j.conbuildmat.2015.05.039.
- Bi, K. and Hao, H. (2013), "Numerical simulation of pounding damage to bridge structures under spatially varying ground motions", Eng. Struct., 46, 62-76. https://doi.org/10.1016/j.engstruct.2012.07.012.
- Dey, V., Bonakdar, A. and Mobasher, B. (2014), "Low-velocity flexural impact response of fiber-reinforced aerated concrete", Cement Concrete Compos., 49, 100-110. https://doi.org/10.1016/j.cemconcomp.2013.12.006.
- Eftekhari, M. and Mohammad, S. (2016), "Multiscale dynamic fracture behavior of the carbon nanotube reinforced concrete under impact loading", J. Impact Eng., 87, 55-64. https://doi.org/10.1016/j.ijimpeng.2015.06.023.
- Elavarasi, D. and Mohan, K.S.R. (2018), "On low-velocity impact response of SIFCON slabs under drop hammer impact loading", Construct. Build. Mater., 160, 127-135. https://doi.org/10.1016/j.conbuildmat.2017.11.013.
- Farnam, Y., Mohammad, S. and Shekarchi, M. (2010), "Experimental and numerical investigations of low velocity impact behavior of high-performance fiber-reinforced cementbased composite", J. Impact Eng., 37(2), 220-229. https://doi.org/10.1016/j.ijimpeng.2009.08.006.
- Foti, D. and Paparella, F. (2014), "Impact behavior of structural elements in concrete reinforced with PET grids", Mech. Res. Communication., 57, 57-66. https://doi.org/10.1016/j.mechrescom.2014.02.007.
- Hognestad, E., Hanson, N.W. and McHenry, D. (1956), "Stress distribution in ultimate strength design", J. American Concrete Institute, 52, 1305-1330.
- Kang, K. and Kim, J. (2017), "Response of a steel column-footing connection subjected to vehicle impact", Struct. Eng. Mech., 63(1), 125-136. https://doi.org/10.12989/sem.2017.63.1.125.
- Kh, H.M., Ozakca, M. and Ekmekyapar, T. (2017), "Nonlinear FE modelling and parametric study on flexural performance of ECC beams", Struct. Eng. Mech., 62(1), 21-31. https://doi.org/10.12989/sem.2017.62.1.021.
- Kumar, V., Iqbal, M.A. and Mittal, A.K. (2018), "Experimental investigation of prestressed and reinforced concrete plates under falling weight impactor", Thin Wall Struct., 126, 106-116. https://doi.org/10.1016/j.tws.2017.06.028.
- Li, J., Wu, C. and Liu, Z. (2018), "Comparative evaluation of steel wire mesh, steel fiber and high-performance polyethylene fiber reinforced concrete slabs in blast tests", Thin Wall Struct., 126, 117-126. https://doi.org/10.1016/j.tws.2017.05.023.
- Liu, J., Wu, C., Li, J., Su, Y., Shao, R., Liu, Z. and Chen, G. (2017), "Experimental and numerical study of reactive powder concrete reinforced with steel wire mesh against projectile penetration", J. Impact Eng., 109, 131-149. https://doi.org/10.1016/j.ijimpeng.2017.06.006.
- Luccioni, B., Isla, F., Codina, R., Ambrosini, D. and Torrijos, M.C. (2017), "Effect of steel fibers on static and blast response of high strength concrete", J. Impact Eng., 107, 23-37. https://doi.org/10.1016/j.ijimpeng.2017.04.027.
- Maca, P., Sovjak, R. and Konvalinka, P. (2014), "Mix design of UHPFRC and its response to projectile impact", J. Impact Eng., 63, 158-163. https://doi.org/10.1016/j.ijimpeng.2013.08.003.
- Mastali, M., Dalvand, A. and Sattarifard, A.R. (2016), "The impact resistance and mechanical properties of reinforced selfcompacting concrete with recycled glass fibre reinforced polymers", J. Cleaner Product., 124, 312-324. https://doi.org/10.1016/j.jclepro.2016.02.148.
- Mastali, M., Naghibdehi, M.G., Naghipour, M. and Rabiee, S.M. (2015), "Experimental assessment of functionally graded reinforced concrete (FGRC) slabs under drop weight and projectile impacts", Construct. Build. Mater., 95, 296-311. https://doi.org/10.1016/j.conbuildmat.2015.07.153.
- Mohammad, H., Abdul Awal, A.S.M. and Mohd Yatim, J.B. (2017), "The impact resistance and mechanical properties of concrete reinforced with waste polypropylene carpet fibers", Construct. Build. Mater., 143, 147-157. https://doi.org/10.1016/j.conbuildmat.2017.03.109.
- Ngo, T., Mendis, P. and Krauthammer, T. (2007), "Behavior of ultrahigh-strength prestressed concrete panels subjected to blast loading", J. Struct. Eng., 133, 1582-1590. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:11(1582).
- Ngo, T.T. and Kim, D.J. (2018), "Shear stress versus strain responses of ultra-high-performance fiber-reinforced concretes at high strain rates", J. Impact Eng., 111, 187-198. https://doi.org/10.1016/j.ijimpeng.2017.09.010.
- Nicolaides, D., Kanellopoulos, A., Savva, P. and Petrou, M. (2015), "Experimental field investigation of impact and blast load resistance of Ultra High Performance Fibre Reinforced Cementitious Composites (UHPFRCCs)", Construct. Build. Mater., 95, 566-574. https://doi.org/10.1016/j.conbuildmat.2015.07.141.
- Ong, K.C.G, Basheerkhan, M. and Paramasivam, P. (1999), "Resistance of fibre concrete slabs to low velocity projectile impact", Cement Concrete Compos., 21(5-6), 391-401. https://doi.org/10.1016/S0958-9465(99)00024-4.
- Peng, Y., Wu, H., Fang, Q., Liu, J.Z. and Gong, Z.M. (2016), "Residual velocities of projectiles after normally perforating the thin ultra-high performance steel fiber reinforced concrete slabs", J. Impact Eng., 97, 1-9. https://doi.org/10.1016/j.ijimpeng.2016.06.006.
- Pham, T.M. and Hao, H. (2016), "Review of concrete structures strengthened with FRP against impact loading", Structures, 7, 59-70. https://doi.org/10.1016/j.istruc.2016.05.003.
- Prakash, A., Srinivasan, S.M. and Mohan Rao, A.R. (2015), "Numerical investigation on steel fibre reinforced cementitious composite panels subjected to high velocity impact loading", Mater. Design, 83, 164-175. https://doi.org/10.1016/j.matdes.2015.06.001.
- Prem, P.R., Verma, M., Murthy, A.R., Rajasankar, J. and Bharatkumar, B.H. (2017), "Numerical and theoretical modelling of low velocity impact on UHPC panels", Struct. Eng. Mech., 63(2), 107-115. https://doi.org/10.12989/sem.2017.63.2.207.
- Rajai, Z., Al-Rousan, M., Alhassan, A. and Al-Salman, H. (2017), "Impact resistance of polypropylene fiber reinforced concrete two-way slabs", Struct. Eng. Mech., 62(3), 373-380. https://doi.org/10.12989/sem.2017.62.3.373.
- Rajput, A. and Iqbal, M.A. (2017), "Ballistic performance of plain, reinforced and pre-stressed concrete slabs under normal impact by an ogival-nosed projectile", J. Impact Eng., 110, 57-71. https://doi.org/10.1016/j.ijimpeng.2017.03.008.
- Ramakrishna, G. and Sundararajan, T. (2005), "Impact strength of a few natural fibre reinforced cement mortar slabs: A comparative study", Cement Concrete Compos., 27(5), 547-553. https://doi.org/10.1016/j.cemconcomp.2004.09.006.
- Ranade, R., Li, V.C., Heard, W.F. and Williams, B.A. (2017), "Impact resistance of high strength-high ductility concrete", Cement Concrete Res., 98, 24-35. https://doi.org/10.1016/j.cemconres.2017.03.013.
- Rao, H.S., Ghorpade, V.G., Ramana, N.V. and Gnaneswar, K. (2010), "Response of SIFCON two-way slabs under impact loading", J. Impact Eng., 37(4), 452-458. https://doi.org/10.1016/j.ijimpeng.2009.06.003.
- Suaris, W. and Shah, S.P. (1982), "Strain-rate effects in fibrereinforced concrete subjected to impact and impulsive loading", Composites, 13(2), 153-159. https://doi.org/10.1016/0010-4361(82)90052-0.
- Tabatabaei, Z.S., Volz, J.S., Keener, D.I. and Gliha, B.P. (2014), "Comparative impact behavior of four long carbon fiber reinforced concretes", Mater. Design, 55, 212-223. https://doi.org/10.1016/j.matdes.2013.09.048.
- Teng, T.L., Chu, Y.A., Chang, F.A. and Chin, H.S. (2004), "Simulation model of impact on reinforced concrete", Cement Concrete Res., 34(11), 2067-2077. https://doi.org/10.1016/j.cemconres.2004.03.019.
- Teng, T.L., Chu, Y.A., Chang, F.A. and Chin, H.S. (2005), "Numerical analysis of oblique impact on reinforced concrete", Cement Concrete Compos., 27, 481-492. https://doi.org/10.1016/j.cemconcomp.2004.05.005.
- Wang, W. and Chouw, N. (2017), "The behaviour of coconut fiber reinforced concrete (CFRC) under impact loading", Construct. Build. Mater., 134, 452-461. https://doi.org/10.1016/j.conbuildmat.2016.12.092.
- Yoo, D.Y., Banthia, N. and Yoon, Y.S. (2017), "Impact resistance of reinforced ultra-high-performance concrete beams with different steel fibers", ACI Struct. J., 114(1), 113-124. https://doi.org/10.14359/51689430
- Yu, R., Beers, L., Spiesz, P. and Brouwers, H.J.H. (2016), "Impact resistance of a sustainable Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) under pendulum impact loadings", Construct. Build. Mater., 107, 203-215. https://doi.org/10.1016/j.conbuildmat.2015.12.157.