DOI QR코드

DOI QR Code

Semi-analytical solutions of free and force vibration behaviors of GRC-FG cylindrical shells

  • Lei, Zuxiang (Institute of Geotechnical Engineering, School of Civil Engineering and Architecture, East China Jiaotong University) ;
  • Tong, Lihong (Institute of Geotechnical Engineering, School of Civil Engineering and Architecture, East China Jiaotong University)
  • 투고 : 2019.04.29
  • 심사 : 2019.08.03
  • 발행 : 2019.09.10

초록

In this paper, free and force vibration behaviors of graphene-reinforced composite functionally graded (GRC-FG) cylindrical shells in thermal environments are investigated based on Reddy's third-order shear deformation theory (HSDT). The GRC-FG cylindrical shells are composed of piece-wise pattern graphene-reinforced layers which have different volume fraction. Based on the extended Halpin-Tsai micromechanical model, the effective material properties of the resulting nanocomposites are evaluated. Using the Hamilton's principle and the assumed mode method, the motion equation of the GRC-FG cylindrical shells is formulated. Using the time- and frequency-domain methods, free and force vibration properties of the GRC-FG cylindrical shell are analyzed. Numerical cases are provided to study the effects of distribution of graphene, shell radius-to-thickness ratio and temperature changes on the free and force vibration responses of GRC-FG cylindrical shells.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China

참고문헌

  1. Ansari, R., Torabi, J. and Shojaei, M.F. (2017), "Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading", Compos. Part B: Eng., 109, 197-213. https://doi.org/10.1016/j.compositesb.2016.10.050
  2. Arani, A.G., Kolahdouzan, F. and Abdollahian, M. (2018), "Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate", Steel Compos. Struct., Int. J., 26(3), 273-287. https://doi.org/10.12989/scs.2018.26.3.273
  3. Asadi, H. (2017), "Numerical simulation of the fluid-solid interaction for CNT reinforced functionally graded cylindrical shells in thermal environments", Acta Astronautica, 138, 214-224. https://doi.org/10.1016/j.actaastro.2017.05.039
  4. Asadi, H. and Beheshti, A.R. (2018), "On the nonlinear dynamic responses of FG-CNTRC beams exposed to aerothermal loads using third-order piston theory", Acta Mechanica, 229(6), 2413-2430. https://doi.org/10.1007/s00707-018-2121-7
  5. Asadi, H. and Wang, Q. (2017a), "Dynamic stability analysis of a pressurized FG-CNTRC cylindrical shell interacting with supersonic airflow", Compos. Part B: Eng., 118, 15-25. https://doi.org/10.1016/j.compositesb.2017.03.001
  6. Asadi, H. and Wang, Q. (2017b), "An investigation on the aeroelastic flutter characteristics of FG-CNTRC beams in the supersonic flow", Compos. Part B: Eng., 116, 486-499. https://doi.org/10.1016/j.compositesb.2016.10.089
  7. Asadi, H., Souri, M. and Wang, Q. (2017), "A numerical study on flow-induced instabilities of supersonic FG-CNT reinforced composite flat panels in thermal environments", Compos. Struct., 171 113-125. https://doi.org/10.1016/j.compstruct.2017.02.003
  8. Bahrami, M.N., Allahkarami, F. and Saryazdi, M.G. (2018), "Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-ofplane motion", Steel Compos. Struct., Int. J., 26(6), 673-691. https://doi.org/10.12989/scs.2018.26.6.673
  9. Chu, K., Wang, X.-h., Li, Y.-b., Huang, D.-j., Geng, Z.-r., Zhao, X.-l., Liu, H. and Zhang, H. (2018), "Thermal properties of graphene/metal composites with aligned graphene", Mater. Des., 140, 85-94. https://doi.org/10.1016/j.matdes.2017.11.048
  10. Dym, C.L. (1973), "Some new results for the vibrations of circular cylinders", J. Sound Vib., 29(2), 189-205. https://doi.org/10.1016/S0022-460X(73)80134-8
  11. Fantuzzi, N., Tornabene, F., Bacciocchi, M. and Dimitri, R. (2017), "Free vibration analysis of arbitrarily shaped Functionally Graded Carbon Nanotube-reinforced plates", Compos. Part B: Eng., 115, 384-408. https://doi.org/10.1016/j.compositesb.2016.09.021
  12. Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear bending of polymer nanocomposite beams reinforced with nonuniformly distributed graphene platelets (GPLs)", Compos. Part B: Eng., 110, 132-140. https://doi.org/10.1016/j.compositesb.2016.11.024
  13. Gasser, L.F.F. (1987), "Free vibrations of thin cylindrical shells containing liquid", M.S. Thesis; Federal University of Rio de Janeiro, PEC.COPPE-UFRJ, Rio de Janeiro, Brazil. [In Portuguese]
  14. Gong, S.W., Toh, S.L. and Shim, V.P.W. (1994), "The elastic response of orthotropic laminated cylindrical shells to lowvelocity impact", Compos. Eng., 4(2), 247-266. https://doi.org/10.1016/0961-9526(94)90030-2
  15. Gul, U. and Aydogdu, M. (2018), "Noncoaxial vibration and buckling analysis of embedded double-walled carbon nanotubes by using doublet mechanics", Compos. Part B: Eng., 137, 60-73. https://doi.org/10.1016/j.compositesb.2017.11.005
  16. Harbaoui, I., Casimir, J.B., Khadimallah, M.A. and Chafra, M. (2018), "A new prestressed dynamic stiffness element for vibration analysis of thick circular cylindrical shells", Int. J. Mech. Sci., 140, 37-50. https://doi.org/10.1016/j.ijmecsci.2018.02.046
  17. Hosseini, S.M. and Zhang, C. (2018), "Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model", Steel Compos. Struct., Int. J., 27(3), 255-271. https://doi.org/10.12989/scs.2018.27.3.255
  18. Jensen, B.D., Odegard, G.M., Kim, J.-W., Sauti, G., Siochi, E.J. and Wise, K.E. (2018), "Simulating the effects of carbon nanotube continuity and interfacial bonding on composite strength and stiffness", Compos. Sci. Technol., 166, 10-19. https://doi.org/10.1016/j.compscitech.2018.02.008
  19. Keleshteri, M.M., Asadi, H. and Wang, Q. (2017a), "Large amplitude vibration of FG-CNT reinforced composite annular plates with integrated piezoelectric layers on elastic foundation", Thin-Wall. Struct., 120, 203-214. https://doi.org/10.1016/j.tws.2017.08.035
  20. Keleshteri, M.M., Asadi, H. and Wang, Q. (2017b), "Postbuckling analysis of smart FG-CNTRC annular sector plates with surface-bonded piezoelectric layers using generalized differential quadrature method", Comput. Methods Appl. Mech. Eng., 325, 689-710. https://doi.org/10.1016/j.cma.2017.11.015
  21. Keleshteri, M.M., Asadi, H. and Wang, Q. (2018), "On the snapthrough instability of post-buckled FG-CNTRC rectangular plates with integrated piezoelectric layers", Comput. Methods Appl. Mech. Eng., 331, 53-71. https://doi.org/10.1016/j.cma.2017.11.015
  22. Keleshteri, M.M., Asadi, H. and Aghdam, M.M. (2019), "Nonlinear bending analysis of FG-CNTRC annular plates with variable thickness on elastic foundation", Thin-Wall. Struct., 135, 453-462. https://doi.org/10.1016/j.tws.2018.11.020
  23. Kiani, Y. (2018), "Isogeometric large amplitude free vibration of graphene reinforced laminated plates in thermal environment using NURBS formulation", Comput. Methods Appl. Mech. Eng., 332, 86-101. https://doi.org/10.1016/j.cma.2017.12.015
  24. Kumar, P. and Srinivas, J. (2018), "Transient vibration analysis of FG-MWCNT reinforced composite plate resting on foundation", Steel Compos. Struct., Int. J., 29(5), 569-578. https://doi.org/10.12989/scs.2018.29.5.569
  25. Lei, Z. and Zhang, Y. (2018), "Characterizing buckling behavior of matrix-cracked hybrid plates containing CNTR-FG layers", Steel Compos. Struct., Int. J., 28(4), 495-508. https://doi.org/10.12989/scs.2018.28.4.495
  26. Lei, Z., Su, Q., Zeng, H., Zhang, Y. and Yu, C. (2018), "Parametric studies on buckling behavior of functionally graded graphenereinforced composites laminated plates in thermal environment", Compos. Struct., 202, 695-709. https://doi.org/10.1016/j.compstruct.2018.03.079
  27. Li, F.-M., Kishimoto, K. and Huang, W.-H. (2009), "The calculations of natural frequencies and forced vibration responses of conical shell using the Rayleigh-Ritz method", Mech. Res. Commun., 36(5), 595-602. https://doi.org/10.1016/j.mechrescom.2009.02.003
  28. Liew, K.M., Zhao, X. and Lee, Y.Y. (2012), "Postbuckling responses of functionally graded cylindrical shells under axial compression and thermal loads", Compos. Part B: Eng., 43(3), 1621-1630. https://doi.org/10.1016/j.compositesb.2011.06.004
  29. Liew, K.M., Lei, Z.X., Yu, J.L. and Zhang, L.W. (2014), "Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach", Comput. Methods Appl. Mech. Eng., 268, 1-17. https://doi.org/10.1016/j.cma.2013.09.001
  30. Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041
  31. Mehri, M., Asadi, H. and Wang, Q. (2016a), "Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method", Comput. Methods Appl. Mech. Eng., 303, 75-100. https://doi.org/10.1016/j.cma.2016.01.017
  32. Mehri, M., Asadi, H. and Wang, Q. (2016b), "On dynamic instability of a pressurized functionally graded carbon nanotube reinforced truncated conical shell subjected to yawed supersonic airflow", Compos. Struct., 153, 938-951. https://doi.org/10.1016/j.compstruct.2016.07.009
  33. Mehri, M., Asadi, H. and Kouchakzadeh, M.A. (2017), "Computationally efficient model for flow-induced instability of CNT reinforced functionally graded truncated conical curved panels subjected to axial compression", Comput. Methods Appl. Mech. Eng., 318, 957-980. https://doi.org/10.1016/j.cma.2017.02.020
  34. Mohammadzadeh-Keleshteri, M., Asadi, H. and Aghdam, M.M. (2017), "Geometrical nonlinear free vibration responses of FGCNT reinforced composite annular sector plates integrated with piezoelectric layers", Compos. Struct., 171, 100-112. https://doi.org/10.1016/j.compstruct.2017.01.048
  35. Rafiee, M.A., Rafiee, J., Yu, Z.Z. and Koratkar, N. (2009), "Buckling resistant graphene nanocomposites", Appl. Phys. Lett., 95(22), 223103. https://doi.org/10.1063/1.3269637
  36. Reddy, J.N. (1999), "On laminated composite plates with integrated sensors and actuators", Eng. Struct., 21(7), 568-593. https://doi.org/10.1016/S0141-0296(97)00212-5
  37. Shakouri, M. and Kouchakzadeh, M.A. (2017), "Analytical solution for vibration of generally laminated conical and cylindrical shells", Int. J. Mech. Sci., 131-132, 414-425. https://doi.org/10.1016/j.ijmecsci.2017.07.016
  38. Shen, H.-S. and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments", Comput. Methods Appl. Mech. Eng., 213-216, 196-205. https://doi.org/10.1016/j.cma.2011.11.025
  39. Shen, H.-S., He, X.Q. and Yang, D.-Q. (2017), "Vibration of thermally postbuckled carbon nanotube-reinforced composite beams resting on elastic foundations", Int. J. Non-Linear Mech., 91, 69-75. https://doi.org/10.1016/j.ijnonlinmec.2017.02.010
  40. Shen, H.-S., Xiang, Y., Fan, Y. and Hui, D. (2018), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical panels resting on elastic foundations in thermal environments", Compos. Part B: Eng., 136, 177-186. https://doi.org/10.1016/j.compositesb.2017.10.032
  41. Sofiyev, A.H., Karaca, Z. and Zerin, Z. (2017), "Non-linear vibration of composite orthotropic cylindrical shells on the nonlinear elastic foundations within the shear deformation theory", Compos. Struct., 159, 53-62. https://doi.org/10.1016/j.compstruct.2016.09.048
  42. Song, Z.G., Zhang, L.W. and Liew, K.M. (2016a), "Active vibration control of CNT reinforced functionally graded plates based on a higher-order shear deformation theory", Int. J. Mech. Sci., 105, 90-101. https://doi.org/10.1016/j.ijmecsci.2015.11.019
  43. Song, Z.G., Zhang, L.W. and Liew, K.M. (2016b), "Dynamic responses of CNT reinforced composite plates subjected to impact loading", Compos. Part B: Eng., 99, 154-161. https://doi.org/10.1016/j.compositesb.2016.06.034
  44. Tahouneh, V. (2018), "Vibration analysis of sandwich sectorial plates considering FG wavy CNT-reinforced face sheets", Steel Compos. Struct., Int. J., 28(5), 541-557. https://doi.org/10.12989/scs.2018.28.5.541
  45. Tornabene, F., Arefi, M., Mohammadi, M., Tabatabaeian, A. and Dimitri, R. (2018), "Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels", Steel Compos. Struct, Int. J., 27(4), 525-536. https://doi.org/10.12989/scs.2018.27.4.525
  46. Vertuccio, L., Guadagno, L., Spinelli, G., Russo, S. and Iannuzzo, G. (2017), "Effect of carbon nanotube and functionalized liquid rubber on mechanical and electrical properties of epoxy adhesives for aircraft structures", Compos. Part B: Eng., 129, 1-10. https://doi.org/10.1016/j.compositesb.2017.07.021
  47. Wan, X., Fan, Y., Ma, W., Li, S., Huang, X. and Yu, J. (2018), "One-step synthesis of nano-silicon/graphene composites using thermal plasma approach", Mater. Lett., 220, 144-147. https://doi.org/10.1016/j.matlet.2018.03.042
  48. Yang, J., Wu, H. and Kitipornchai, S. (2018), "Free vibration of thermo-electro-mechanically postbuckled FG-CNTRC beams with geometric imperfections", Steel Compos. Struct., Int. J., 29(3), 319-332. https://doi.org/10.12989/scs.2018.29.3.319
  49. Zhan, J.M., Yao, X.H., Li, W.H. and Zhang, X.Q. (2017), "Tensile mechanical properties study of SiC/graphene composites based on molecular dynamics", Computat. Mater. Sci., 131, 266-274. https://doi.org/10.1016/j.commatsci.2017.02.006
  50. Zhang, X.M., Liu, G.R. and Lam, K.Y. (2001), "Vibration analysis of thin cylindrical shells using wave propagation approach", J. Sound Vib., 239(3), 397-403. https://doi.org/10.1006/jsvi.2000.3139
  51. Zhang, W., Fang, Z., Yang, X.-D. and Liang, F. (2018), "A series solution for free vibration of moderately thick cylindrical shell with general boundary conditions", Eng. Struct., 165, 422-440. https://doi.org/10.1016/j.engstruct.2018.03.049