과제정보
연구 과제 주관 기관 : University of Kashan
참고문헌
- Aglietti, G.S., Gabriel, S.B., Langley, R.S. and Rogers, E. (1997), "A modeling technique for active control design studies with application to spacecraft microvibrations", J. Acoust. Soc. Am., 102(4), 2158-2166. https://doi.org/10.1121/1.419631
- Aglietti, G.S., Langley, R.S., Rogers, E. and Gabriel, S.B. (2000), "An efficient model of an equipment loaded panel for active control design studies", J. Acoust. Soc. Am., 108(4), 1663-1673. https://doi.org/10.1121/1.1287844
- Aglietti, G.S., Stoustrup, J., Langley, R.S., Rogers, E. and Gabriel, S.B. (2002), "Modelling and feedback control of microvibrations", In: The Institution of Electrical Engineers, pp. 241-274.
- Aglietti, G.S., Langley, R.S., Rogers, E. and Gabriel, S.B. (2004), "Model building and verification for active control of microvibrations with probabilistic assessment of the effects of uncertainties", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 218(4), 389-399. https://doi.org/10.1177/095440620421800404
- Arani, A.G. and Kiani, F. (2018), "Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation with different boundary conditions", Steel Compos. Struct., Int. J., 28(2), 149-165. https://doi.org/10.12989/scs.2018.28.2.149
- Arani, A.G., Hashemian, M., Loghman, A. and Mohammadimehr, M. (2011), "Study of dynamic stability of the double-walled carbon nanotube under axial loading embedded in an elastic medium by the energy method", J. Appl. Mech. Tech. Phys., 52(5), 815-824. https://doi.org/10.1134/S0021894411050178
- Aydin, M.R. and Gundogdu, O. (2018), "Vibration analysis of honeycomb sandwich composites filled with polyurethane foam by Taguchi Method", Steel Compos. Struct., Int. J., 28(4), 461-470. https://doi.org/10.12989/scs.2018.28.4.461
- Bui, T.Q., Khosravifard, A., Zhang, C., Hematiyan, M.R. and Golub, M.V. (2013), "Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method", Eng. Struct., 47, 90-104. https://doi.org/10.1016/j.engstruct.2012.03.041
- Chhabra, D., Chandna, P. and Bhushan, G. (2011), "Design and analysis of smart structures for active vibration control using piezo-crystals", Int. J. Eng. Technol., 1(3), 153-163.
- Daouadji, T.H., Benferhat, R. and Adim, B. (2016), "A novel higher order shear deformation theory based on the neutral surface concept of FGM plate under transverse load", Adv. Mater. Res., Int. J., 5(2), 107-120. https://doi.org/10.12989/amr.2016.5.2.107
- Daraji, A.H., Hale, J.M. and Ye, J. (2017), "New methodology for optimal placement of piezoelectric sensor/actuator pairs for active vibration control of flexible structures", J. Vib. Acoust., 140(1), 011015. https://doi.org/10.1115/1.4037510
- Do, T.V., Bui, T.Q., Yu, T.T., Pham, D.T. and Nguyen, C.T. (2017), "Role of material combination and new results of mechanical behavior for FG sandwich plates in thermal environment", J. Computat. Sci., 21, 164-181. https://doi.org/10.1016/j.jocs.2017.06.015
- Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., Int. J., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109
- Fang, Y., Fei, J. and Hu, T. (2018), "Adaptive backstepping fuzzy sliding mode vibration control of flexible structure", J. Low Frequency Noise Vib. Active Control, 37(4), 1079-1096. https://doi.org/10.1016/j.jocs.2017.06.015
- Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Computat. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011
- He, X., He, W., Chen, Y., Mu, X., Yu, Y. and Sun, C. (2018), "Boundary control of flexible aircraft wings for vibration suppression", Int. J. Control, 10, 1-10. https://doi.org/10.1080/00207179.2018.1442025
- Kim, B.J. and Lee, D.G. (2008), "Characteristics of joining inserts for composite sandwich panels", Compos. Struct., 86(1), 55-60. https://doi.org/10.1016/j.compstruct.2008.03.020
- Kumar, K.R. and Narayanan, S. (2008), "Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs", Smart Mater. Struct., 17(5), 055008. https://doi.org/10.1088/0964-1726/17/5/055008
- Kumar, R., Dey, T. and Panda, S.K. (2019), "Instability and vibration analyses of FG cylindrical panels under parabolic axial compressions", Steel Compos. Struct., Int. J., 31(2), 187-199. https://doi.org/10.12989/scs.2019.31.2.187
- Lin, H. and Cao, D.Q. (2018), "A unified Gram-Schmidt-Ritz formulation for vibration and active flutter control analysis of honeycomb sandwich plate with general elastic support", J. Vibroeng., 20(5), 1982-2000. https://doi.org/10.1088/0964-1726/17/5/055008
- Malekzadeh, M., Naghash, A. and Talebi, H.A. (2012), "Robust attitude and vibration control of a nonlinear flexible spacecraft", Asian J. Control, 14(2), 553-563. https://doi.org/10.1002/asjc.332
- Marynowski, K. (2012), "Dynamic analysis of an axially moving sandwich beam with viscoelastic core", Compos. Struct., 94(9), 2931-2936. https://doi.org/10.1016/j.compstruct.2012.03.040
- Mohammadimehr, M. and Mehrabi, M. (2017), "Stability and free vibration analyses of double-bonded micro composite sandwich cylindrical shells conveying fluid flow", Appl. Math. Model., 47, 685-709. https://doi.org/10.1016/j.apm.2017.03.054
- Mohammadimehr, M. and Rahmati, A.H. (2013), "Small scale effect on electro-thermo-mechanical vibration analysis of single-walled boron nitride nanorods under electric excitation", Turkish J. Eng. Environ. Sci., 37(1), 1-15.
- Mohammadimehr, M. and Shahedi, S. (2017), "High-order buckling and free vibration analysis of two types sandwich beam including AL or PVC-foam flexible core and CNTs reinforced nanocomposite face sheets using GDQM", Compos. Part B: Eng., 108, 91-107. https://doi.org/10.1016/j.compositesb.2016.09.040
- Mohammadimehr, M., Navi, B.R. and Arani, A.G. (2016a), "Dynamic stability of MSGT sinusoidal viscoelastic piezoelectric polymeric FG-SWNT reinforced nanocomposite plate considering surface stress and agglomeration effects under hydro-thermo-electro-magneto-mechanical loadings", Mech. Adv. Mater. Struct., 24(16), 1325-1342. http://dx.doi.org/10.1080/15376494.2016.1227507
- Mohammadimehr, M., Rostami, R. and Arefi, M. (2016b), "Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT", Steel Compos. Struct., Int. J., 20(3), 513-543. https://doi.org/10.12989/scs.2016.20.3.513
- Mohammadimehr, M., Zarei, H.B., Parakandeh, A. and Arani, A.G. (2017a), "Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and un-symmetric distributions of nanotubes under multi physical fields", Struct. Eng. Mech., Int. J., 64(3), 361-379. https://doi.org/10.12989/sem.2017.64.3.361
- Mohammadimehr, M., Monajemi, A.A. and Afshari, H. (2017b), "Free and forced vibration analysis of viscoelastic damped FGCNT reinforced micro composite beams", Microsyst. Technol., 1-15. https://doi.org/10.1007/s00542-017-3682-4
- Mohammadimehr, M., Shahedi, S. and Rousta Navi, B. (2017c), "Nonlinear vibration analysis of FG-CNTRC sandwich Timoshenko beam based on modified couple stress theory subjected to longitudinal magnetic field using generalized differential quadrature method", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 231(20), 3866-3885. https://doi.org/10.1177/0954406216653622
- Mohammadimehr, M., Mohammadi-Dehabadi, A.A., Akhavan Alavi, S.M., Alambeigi, K., Bamdad, M., Yazdani, R. and Hanifehlou, S. (2018a), "Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite", Steel Compos. Struct., Int. J., 29(3), 405-422. https://doi.org/10.12989/scs.2018.29.3.405
- Mohammadimehr, M., Okhravi, S.V. and Akhavan Alavi, S.M. (2018b), "Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT", J. Vib. Control, 24(8), 1551-1569. https://doi.org/10.1177/1077546316664022
- Murray, R.M. (2006), Lecture 2 - LQR Control, California Institute of Technology Control and Dynamical Systems.
- Nadirian, N., Biglari, H. and Hamed, M.A. (2017), "LQG vibration control of sandwich beams with transversely flexible core equipped with piezoelectric patches", J. Computat. Appl. Res. Mech. Eng. (JCARME), 7(1), 85-97. http://dx.doi.org/10.22061/JCARME.2017.643
- Nasihatgozar, M., Khalili, S.M.R. and Fard, K.M. (2017), "General equations for free vibrations of thick doubly curved sandwich panels with compressible and incompressible core using higher order shear deformation theory", Steel Compos. Struct., Int. J., 24(2), 151-176. https://doi.org/10.12989/scs.2017.24.2.151
- Nguyen, K., Thai, H.T. and Vo, T. (2015), "A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 91-120. http://dx.doi.org/10.12989/scs.2015.18.1.091
- Nguyen, D.K. and Tran, T.T. (2018), "Free vibration of tapered BFGM beams using an efficient shear deformable finite element model", Steel Compos. Struct., Int. J., 29(3), 363-377. https://doi.org/10.12989/scs.2018.29.3.363
- Niu, W., Zou, C., Li, B. and Wang, W. (2019), "Adaptive vibration suppression of time-varying structures with enhanced FxLMS algorithm", Mech. Syst. Signal Process., 118, 93-107. https://doi.org/10.1016/j.ymssp.2018.08.009
- Qiu, Z. and Ling, D. (2014), "Finite element modeling and robust vibration control of two-hinged plate using bonded piezoelectric sensors and actuators", Acta Mechanica Solida Sinica, 27(2), 146-161. https://doi.org/10.1016/S0894-9166(14)60025-2
- Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, Int. J., 23(5), 361-376. https://doi.org/10.12989/cac.2019.23.5.361
- Rashad, M., Wahab, Mostafa M.A. and Yang, T.Y. (2019), "Experimental and numerical investigation of RC sandwich panels with helical springs under free air blast loads", Steel Compos. Struct., Int. J., 30(3), 217-230. https://doi.org/10.12989/scs.2019.30.3.217
- Selim, B.A., Zhang, L.W. and Liew, K.M. (2017), "Active vibration control of CNT-reinforced composite plates with piezoelectric layers based on Reddy's higher-order shear deformation theory", Compos. Struct., 163, 350-364. https://doi.org/10.1016/j.compstruct.2016.11.011
- Sharma, S., Vig, R. and Kumar, N. (2015), "Active vibration control: considering effect of electric field on PZT patches", Smart Struct. Syst., Int. J., 16(6), 1091-1105. https://doi.org/10.12989/sss.2015.16.6.1091
- Shen, H.S. and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments", Comput. Methods Appl. Mech. Eng., 213-216, 196-205. https://doi.org/10.1016/j.cma.2011.11.025
- Tahouneh, V. (2017), "Vibration and mode shape analysis of sandwich panel with MWCNTs FG-reinforcement core", Steel Compos. Struct., Int. J., 25(3), 347-360. https://doi.org/10.12989/scs.2017.25.3.347
- Xu, S., Cui, N., Fan, Y. and Guan, Y. (2018a), "Active vibration suppression of flexible spacecraft during attitude maneuver with actuator dynamics", IEEE Access, 6, 35327-35337. https://doi.org/10.1109/ACCESS.2018.2851665
- Xu, Y., Li, Z. and Guo, K. (2018b), "Active vibration robust control for FGM beams with piezoelectric layers", Struct. Eng. Mech., Int. J., 67(1), 33-43. https://doi.org/10.12989/sem.2018.67.1.033
- Yazdani, R., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of Cooper-Naghdi micro saturated porous sandwich cylindrical shells with reinforced CNT face sheets under magneto-hydro-thermo-mechanical loadings", Struct. Eng. Mech., Int. J., 70(3), 351-365. https://doi.org/10.12989/sem.2019.70.3.351
- Zenkour, A.M. and Aljadani, M.H. (2018), "Mechanical buckling of functionally graded plates using a refined higher-order shear and normal deformation plate theory", Adv. Aircraft Spacecr. Sci., Int. J., 5(6), 615-632. https://doi.org/10.12989/aas.2018.5.6.615
피인용 문헌
- Optimal placement of piezoelectric actuator/senor patches pair in sandwich plate by improved genetic algorithm vol.26, pp.6, 2019, https://doi.org/10.12989/sss.2020.26.6.721
- Computer modeling to forecast accurate of efficiency parameters of different size of graphene platelet, carbon, and boron nitride nanotubes: A molecular dynamics simulation vol.27, pp.2, 2019, https://doi.org/10.12989/cac.2021.27.2.111
- Computer simulation for stability analysis of the viscoelastic annular plate with reinforced concrete face sheets vol.27, pp.4, 2019, https://doi.org/10.12989/cac.2021.27.4.369
- Computer simulation for stability performance of sandwich annular system via adaptive tuned deep learning neural network optimization vol.11, pp.1, 2021, https://doi.org/10.12989/anr.2021.11.1.083