DOI QR코드

DOI QR Code

On forced and free vibrations of cutout squared beams

  • Almitani, Khalid H. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Abdelrahman, Alaa A. (Mechanical Design & Production Department, Faculty of Engineering, Zagazig University) ;
  • Eltaher, Mohamed A. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University)
  • Received : 2019.04.16
  • Accepted : 2019.08.04
  • Published : 2019.09.10

Abstract

Perforation and cutouts of structures are compulsory in some modern applications such as in heat exchangers, nuclear power plants, filtration and microeletromicanical system (MEMS). This perforation complicates dynamic analyses of these structures. Thus, this work tends to introduce semi-analytical model capable of investigating the dynamic performance of perforated beam structure under free and forced conditions, for the first time. Closed forms for the equivalent geometrical and material characteristics of the regular square perforated beam regular square, are presented. The governing dynamical equation of motion is derived based on Euler-Bernoulli kinematic displacement. Closed forms for resonant frequencies, corresponding Eigen-mode functions and forced vibration time responses are derived. The proposed analytical procedure is proved and compared with both analytical and numerical analyses and good agreement is noticed. Parametric studies are conducted to illustrate effects of filling ratio and the number of holes on the free vibration characteristic, and forced vibration response of perforated beams. The obtained results are supportive in mechanical design of large devices and small systems (MEMS) based on perforated structure.

Keywords

Acknowledgement

Supported by : King Abdulaziz University

References

  1. Abbasnejad, B. and Rezazadeh, G. (2012), "Mechanical behavior of a FGM micro-beam subjected to a nonlinear electrostatic pressure", Int. J. Mech. Mater. Des., 8(4), 381-392. https://doi.org/10.1007/s10999-012-9202-x
  2. Abdelbari, S., Amar, L.H.H., Kaci, A. and Tounsi, A. (2018), "Single variable shear deformation model for bending analysis of thick beams", Struct. Eng. Mech., Int. J., 67(3), 291-300. https://doi.org/10.12989/sem.2018.67.3.291
  3. Akbarzade, M. and Farshidianfar, A. (2017), "Nonlinear dynamic analysis of an elastically restrained cantilever tapered beam", J. Appl. Mech. Tech. Phys., 58(3), 556-565. https://doi.org/10.1134/S002189441703021X
  4. Bendali, A., Labedan, R., Domingue, F. and Nerguizian, V. (2006), May), "Holes effects on RF MEMS parallel membranes capacitors", Proceedings of Canadian Conference on Electrical and Computer Engineering, CCECE'06, Ottawa, Canada, May, pp. 2140-2143.
  5. Benguediab, S., Tounsi, A., Abdelaziz, H.H. and Meziane, M.A.A. (2017), "Elasticity solution for a cantilever beam with exponentially varying properties", J. Appl. Mech. Tech. Phys., 58(2), 354-361. https://doi.org/10.1134/S0021894417020213
  6. Bennai, R., Atmane, H.A. and Tounsi, A. (2015), "A new higherorder shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., Int. J., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521
  7. Berggren, S.A., Lukkassen, D., Meidell, A. and Simula, L. (2003), "Some methods for calculating stiffness properties of periodic structures", Applicat. Math., 48(2), 97-110. https://doi.org/10.1023/A:1026090026531
  8. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  9. Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Bedia, E.A.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., Int. J., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467
  10. Brown, C.J. and Yettram, A.L. (1986), "The elastic stability of square perforated plates under combinations of bending, shear and direct load", Thin-Wall. Struct., 4(3), 239-246. https://doi.org/10.1016/0263-8231(86)90005-4
  11. Chen, D.W. and Liu, T.L. (2006), "Free and forced vibrations of a tapered cantilever beam carrying multiple point masses", Structural Engineering and Mechanics, 23(2), 209-216. https://doi.org/10.12989/sem.2006.23.2.209
  12. Chen, X. and Meguid, S.A. (2017), "Dynamic behavior of microresonator under alternating current voltage", Int. J. Mech. Mater. Des., 13(4), 481-497. https://doi.org/10.1007/s10999-016-9354-1
  13. Cheng, B. and Zhao, J. (2010), "Strengthening of perforated plates under uniaxial compression: Buckling analysis", Thin-Wall. Struct., 48(12), 905-914. https://doi.org/10.1016/j.tws.2010.06.001
  14. De Pasquale, G., Veijola, T. and Soma, A. (2010), "Modelling and validation of air damping in perforated gold and silicon MEMS plates", J. Micromech. Microeng., 20(1), 015010. https://doi.org/10.1088/0960-1317/20/1/015010
  15. Driz, H., Benchohra, M., Bakora, A., Benachour, A., Tounsi, A. and Bedia, E.A.A. (2018), "A new and simple HSDT for isotropic and functionally graded sandwich plates", Steel Compos. Struct., Int. J., 26(4), 387-405. https://doi.org/10.12989/scs.2018.26.4.387
  16. Duncan, J.P. and Upfold, R.W. (1963), "Equivalent elastic properties of perforated bars and plates", J. Mech. Eng. Sci., 5(1), 53-65. https://doi.org/10.1243/JMES_JOUR_1963_005_009_02
  17. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Math. Model., 37(7), 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016
  18. Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014a), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Math. Computat., 235, 512-529. https://doi.org/10.1016/j.amc.2014.03.028
  19. Eltaher, M.A., Hamed, M.A., Sadoun, A.M. and Mansour, A. (2014b), "Mechanical analysis of higher order gradient nanobeams", Appl. Math. Computat., 229, 260-272. https://doi.org/10.1016/j.amc.2013.12.076
  20. Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., Int. J., 4(1), 51-64. https://doi.org/10.12989/anr.2016.4.1.051
  21. Eltaher, M.A., Kabeel, A.M., Almitani, K.H. and Abdraboh, A.M. (2018a), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsyst. Technolog., 24(12), 4881-4893. https://doi.org/10.1007/s00542-018-3905-3
  22. Eltaher, M.A., Abdraboh, A.M. and Almitani, K.H. (2018b), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsyst. Technol., 24(9), 3925-3937. https://doi.org/10.1007/s00542-018-3910-6
  23. Guha, K., Kumar, M., Agarwal, S. and Baishya, S. (2015), "A modified capacitance model of RF MEMS shunt switch incorporating fringing field effects of perforated beam", Solid-State Electronics, 114, 35-42. https://doi.org/10.1016/j.sse.2015.07.008
  24. Guha, K., Laskar, N.M., Gogoi, H.J., Borah, A.K., Baishnab, K.L. and Baishya, S. (2017), "Novel analytical model for optimizing the pull-in voltage in a flexured MEMS switch incorporating beam perforation effect", Solid-State Electronics, 137, 85-94. https://doi.org/10.1016/j.sse.2017.08.007
  25. Guha, K., Laskar, N.M., Gogoi, H.J., Baishnab, K.L. and Rao, K.S. (2018), "A new analytical model for switching time of a perforated MEMS switch", Microsyst. Technol., 1-10. https://doi.org/10.1007/s00542-018-3803-8
  26. Heidari, A., Keikha, R., Haghighi, M.S. and Hosseinabadi, H. (2018), "Numerical study for vibration response of concrete beams reinforced by nanoparticles", Struct. Eng. Mech., Int. J., 67(3), 311-316. https://doi.org/10.12989/sem.2018.67.3.311
  27. Hieu, D. and Hai, N.Q. (2019), "Free vibration analysis of quintic nonlinear beams using equivalent linearization method with a weighted averaging", J. Appl. Computat. Mech., 5(1), 46-57. https://doi.org/10.22055/JACM.2018.24919.1217
  28. Humar, J. (2012), Dynamics of Structures, CRC press.
  29. Inman, D.J. (2014), Engineering Vibration, (4th Ed.), Pearson Education, Pearson, London, UK.
  30. Jeong, K.H. and Amabili, M. (2006), "Bending vibration of perforated beams in contact with a liquid", J. Sound Vib., 298(1-2), 404-419. https://doi.org/10.1016/j.jsv.2006.05.029
  31. Jeong, K.H., Ahn, B.K. and Lee, S.C. (2001), "Modal analysis of perforated rectangular plates in contact with water", Struct. Eng. Mech., Int. J., 12(2), 189-200. https://doi.org/10.12989/sem.2001.12.2.189
  32. Kim, J.H., Jeon, J.H., Park, J.S., Seo, H.D., Ahn, H.J. and Lee, J.M. (2015), "Effect of reinforcement on buckling and ultimate strength of perforated plates", Int. J. Mech. Sci., 92, 194-205. https://doi.org/10.1016/j.ijmecsci.2014.12.016
  33. Lee, Y.Y. (2016), "The effect of leakage on the sound absorption of a nonlinear perforated panel backed by a cavity", Int. J. Mech. Sci., 107, 242-252. https://doi.org/10.1016/j.ijmecsci.2016.01.019
  34. Loughlan, J. and Hussain, N. (2018), "The post-buckled failure of steel thin plate shear webs with stiffened centrally located cutouts", Thin-Wall. Struct., 128, 80-91. https://doi.org/10.1016/j.tws.2017.07.015
  35. Luschi, L. and Pieri, F. (2012), "A simple analytical model for the resonance frequency of perforated beams", Procedia Eng., 47, 1093-1096. https://doi.org/10.1016/j.proeng.2012.09.341
  36. Luschi, L. and Pieri, F. (2014), "An analytical model for the determination of resonance frequencies of perforated beams", J. Micromech. Microeng., 24(5), 055004. https://doi.org/10.1088/0960-1317/24/5/055004
  37. Luschi, L. and Pieri, F. (2016), "An analytical model for the resonance frequency of square perforated Lame-mode resonators", Sensors Actuators B: Chem., 222, 1233-1239. https://doi.org/10.1016/j.snb.2015.07.085
  38. Mali, K.D. and Singru, P.M. (2013), "Determination of the fundamental frequency of perforated rectangular plates: Concentrated negative mass approach for the perforation", Adv. Acoust. Vib. http://dx.doi.org/10.1155/2013/972409
  39. Mali, K.D. and Singru, P.M. (2015), "Determination of modal constant for fundamental frequency of perforated plate by Rayleigh's method using experimental values of natural frequency", Int. J. Acoust. Vib., 20(3), 177-184.
  40. Mirzabeigy, A. and Madoliat, R. (2019), "A Note on Free Vibration of a Double-beam System with Nonlinear Elastic Inner Layer", J. Appl. Computat. Mech., 5(1), 174-180. https://doi.org/10.22055/JACM.2018.25143.1232
  41. Mohammadimehr, M. and Alimirzaei, S. (2016), "Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM", Struct. Eng. Mech., Int. J., 59(3), 431-454. https://doi.org/10.12989/sem.2016.59.3.431
  42. Patel, S.N., Datta, P.K. and Sheikh, A.H. (2010), "Effect of harmonic in-plane edge loading on dynamic stability of stiffened shell panels with cutouts", Int. J. Appl. Mech., 2(4), 759-785. https://doi.org/10.1142/S1758825110000743
  43. Pedersen, M., Olthuis, W. and Bergveld, P. (1996), "On the mechanical behaviour of thin perforated plates and their application in silicon condenser microphones", Sensors Actuators A: Phys., 54(1-3), 499-504. https://doi.org/10.1016/S0924-4247(95)01189-7
  44. Kerid, R., Bourouina, H., Yahiaoui, R., Bounekhla, M. and Aissat, A. (2019), "Magnetic field effect on nonlocal resonance frequencies of structure-based filter with periodic square holes network", Physica E: Low-dimens. Syst. Nanostruct., 105, 83-89. https://doi.org/10.1016/j.physe.2018.05.021
  45. Rahman, M., Hasan, A.S. and Yeasmin, I.A. (2019), "Modified Multi-level Residue Harmonic Balance Method for Solving Nonlinear Vibration Problem of Beam Resting on Nonlinear Elastic Foundation", J. Appl. Computat. Mech., 5(4), 627-638. https://doi.org/10.22055/JACM.2018.26729.1352
  46. Rao, S.S. (2007), Vibration of Continuous Systems, John Wiley & Sons.
  47. Rastgoo, A., Ebrahimi, F. and Dizaji, A.F. (2006), "On the existence of periodic solution for equation of motion of thick beams having arbitrary cross section with tip mass under harmonic support motion", Int. J. Mech. Mater. Des., 3(1), 29-38. https://doi.org/10.1007/s10999-006-9011-1
  48. Rebeiz, G.M. (2004), RF MEMS: Theory, Design, and Technology, John Wiley & Sons.
  49. Sedighi, H.M. (2014), "Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory", Acta Astronautica, 95, 111-123. https://doi.org/10.1016/j.actaastro.2013.10.020
  50. Sedighi, H.M., Shirazi, K.H. and Noghrehabadi, A. (2012), "Application of recent powerful analytical approaches on the non-linear vibration of cantilever beams", Int. J. Nonlinear Sci. Numer. Simul., 13(7-8), 487-494. https://doi.org/10.1515/ijnsns-2012-0030
  51. Sedighi, H.M., Koochi, A., Daneshmand, F. and Abadyan, M. (2015a), "Non-linear dynamic instability of a double-sided nano-bridge considering centrifugal force and rarefied gas flow", Int. J. Non-Linear Mech., 77, 96-106. https://doi.org/10.1016/j.ijnonlinmec.2015.08.002
  52. Sedighi, H.M., Shirazi, K.H. and Changizian, M. (2015b), "Effect of the amplitude of vibrations on the pull-in instability of double-sided actuated microswitch resonators", J. Appl. Mech. Tech. Phys., 56(2), 304-312. https://doi.org/10.1134/S0021894415020169
  53. Shanmugam, N.E., Thevendran, V. and Tan, Y.H. (1999), "Design formula for axially compressed perforated plates", Thin-Wall. Struct., 34(1), 1-20. https://doi.org/10.1016/S0263-8231(98)00052-4
  54. She, G.L., Ren, Y.R., Xiao, W.S. and Liu, H.B. (2018a), "Study on thermal buckling and post-buckling behaviors of FGM tubes resting on elastic foundations", Struct. Eng. Mech., Int. J., 66(6), 729-736. https://doi.org/10.12989/sem.2018.66.6.729
  55. She, G.L., Yan, K.M., Zhang, Y.L., Liu, H.B. and Ren, Y.R. (2018b), "Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory", Eur. Phys. J. Plus, 133(9), 368. https://doi.org/10.1140/epjp/i2018-12196-5
  56. She, G.L., Ren, Y.R. and Yan, K.M. (2019a), "On snap-buckling of porous FG curved nanobeams", Acta Astronautica, 161, 475-484. https://doi.org/10.1016/j.actaastro.2019.04.010
  57. She, G.L., Ren, Y.R. and Yan, K.M. (2019b), "Hygro-thermal wave propagation in functionally graded double-layered nanotubes systems", Steel Compos. Struct., Int. J., 31(6), 641-653. https://doi.org/10.12989/scs.2019.31.6.641
  58. Srivastava, A.K.L., Datta, P.K. and Sheikh, A.H. (2003), "Prediction of Natural Frequencies of Stiffened Plates with Cutouts Subjected to In-plane Forces", In: Structural Stability And Dynamics: With CD-ROM (Volume 1), pp. 278-282. https://doi.org/10.1142/9789812776228_0036
  59. Tu, W.H., Chu, W.C., Lee, C.K., Chang, P.Z. and Hu, Y.C. (2013), "Effects of etching holes on complementary metal oxide semiconductor-microelectromechanical systems capacitive structure", J. Intel. Mater. Syst. Struct., 24(3), 310-317. https://doi.org/10.1177/1045389X12449917
  60. Wang, Y., Feng, C., Zhao, Z. and Yang, J. (2018), "Buckling of graphene platelet reinforced composite cylindrical shell with cutout", Int. J. Struct. Stabil. Dyn., 18(3), 1850040. https://doi.org/10.1142/S0219455418500402
  61. Yahiaoui, M., Tounsi, A., Fahsi, B., Bouiadjra, R.B. and Benyoucef, S. (2018), "The role of micromechanical models in the mechanical response of elastic foundation FG sandwich thick beams", Struct. Eng. Mech., Int. J., 68(1), 53-66. https://doi.org/10.12989/sem.2018.68.1.053
  62. Yettram, A.L. and Brown, C.J. (1985), "The elastic stability of square perforated plates", Comput. Struct., 21(6), 1267-1272. https://doi.org/10.1016/0045-7949(85)90180-4
  63. Yuan, W.B., Yu, N.T. and Li, L.Y. (2017), "Distortional buckling of perforated cold-formed steel channel-section beams with circular holes in web", Int. J. Mech. Sci., 126, 255-260. https://doi.org/10.1016/j.ijmecsci.2017.04.001
  64. Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2017), "A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams", Struct. Eng. Mech., Int. J., 64(2), 145-153. https://doi.org/10.12989/sem.2017.64.2.145
  65. Rebeiz, G.M. (2004), RF MEMS: Theory, Design, and Technology, John Wiley & Sons.
  66. Duncan, J.P. and Upfold, R.W. (1963), "Equivalent elastic properties of perforated bars and plates", J. Mech. Eng. Sci., 5(1), 53-65. https://doi.org/10.1243/JMES_JOUR_1963_005_009_02

Cited by

  1. Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads vol.34, pp.1, 2019, https://doi.org/10.12989/scs.2020.34.1.075
  2. Buckling and stability analysis of sandwich beams subjected to varying axial loads vol.34, pp.2, 2019, https://doi.org/10.12989/scs.2020.34.2.241
  3. On bending analysis of perforated microbeams including the microstructure effects vol.76, pp.6, 2020, https://doi.org/10.12989/sem.2020.76.6.765
  4. Forced vibration of a functionally graded porous beam resting on viscoelastic foundation vol.24, pp.1, 2019, https://doi.org/10.12989/gae.2021.24.1.091
  5. Vibration of multilayered functionally graded deep beams under thermal load vol.24, pp.6, 2019, https://doi.org/10.12989/gae.2021.24.6.545
  6. Finite element based stress and vibration analysis of axially functionally graded rotating beams vol.79, pp.1, 2019, https://doi.org/10.12989/sem.2021.79.1.023
  7. Experimental studies on vibration serviceability of composite steel-bar truss slab with steel girder under human activities vol.40, pp.5, 2019, https://doi.org/10.12989/scs.2021.40.5.663