Acknowledgement
Supported by : King Abdulaziz University
References
- Abbasnejad, B. and Rezazadeh, G. (2012), "Mechanical behavior of a FGM micro-beam subjected to a nonlinear electrostatic pressure", Int. J. Mech. Mater. Des., 8(4), 381-392. https://doi.org/10.1007/s10999-012-9202-x
- Abdelbari, S., Amar, L.H.H., Kaci, A. and Tounsi, A. (2018), "Single variable shear deformation model for bending analysis of thick beams", Struct. Eng. Mech., Int. J., 67(3), 291-300. https://doi.org/10.12989/sem.2018.67.3.291
- Akbarzade, M. and Farshidianfar, A. (2017), "Nonlinear dynamic analysis of an elastically restrained cantilever tapered beam", J. Appl. Mech. Tech. Phys., 58(3), 556-565. https://doi.org/10.1134/S002189441703021X
- Bendali, A., Labedan, R., Domingue, F. and Nerguizian, V. (2006), May), "Holes effects on RF MEMS parallel membranes capacitors", Proceedings of Canadian Conference on Electrical and Computer Engineering, CCECE'06, Ottawa, Canada, May, pp. 2140-2143.
- Benguediab, S., Tounsi, A., Abdelaziz, H.H. and Meziane, M.A.A. (2017), "Elasticity solution for a cantilever beam with exponentially varying properties", J. Appl. Mech. Tech. Phys., 58(2), 354-361. https://doi.org/10.1134/S0021894417020213
- Bennai, R., Atmane, H.A. and Tounsi, A. (2015), "A new higherorder shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., Int. J., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521
- Berggren, S.A., Lukkassen, D., Meidell, A. and Simula, L. (2003), "Some methods for calculating stiffness properties of periodic structures", Applicat. Math., 48(2), 97-110. https://doi.org/10.1023/A:1026090026531
- Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
- Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Bedia, E.A.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., Int. J., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467
- Brown, C.J. and Yettram, A.L. (1986), "The elastic stability of square perforated plates under combinations of bending, shear and direct load", Thin-Wall. Struct., 4(3), 239-246. https://doi.org/10.1016/0263-8231(86)90005-4
- Chen, D.W. and Liu, T.L. (2006), "Free and forced vibrations of a tapered cantilever beam carrying multiple point masses", Structural Engineering and Mechanics, 23(2), 209-216. https://doi.org/10.12989/sem.2006.23.2.209
- Chen, X. and Meguid, S.A. (2017), "Dynamic behavior of microresonator under alternating current voltage", Int. J. Mech. Mater. Des., 13(4), 481-497. https://doi.org/10.1007/s10999-016-9354-1
- Cheng, B. and Zhao, J. (2010), "Strengthening of perforated plates under uniaxial compression: Buckling analysis", Thin-Wall. Struct., 48(12), 905-914. https://doi.org/10.1016/j.tws.2010.06.001
- De Pasquale, G., Veijola, T. and Soma, A. (2010), "Modelling and validation of air damping in perforated gold and silicon MEMS plates", J. Micromech. Microeng., 20(1), 015010. https://doi.org/10.1088/0960-1317/20/1/015010
- Driz, H., Benchohra, M., Bakora, A., Benachour, A., Tounsi, A. and Bedia, E.A.A. (2018), "A new and simple HSDT for isotropic and functionally graded sandwich plates", Steel Compos. Struct., Int. J., 26(4), 387-405. https://doi.org/10.12989/scs.2018.26.4.387
- Duncan, J.P. and Upfold, R.W. (1963), "Equivalent elastic properties of perforated bars and plates", J. Mech. Eng. Sci., 5(1), 53-65. https://doi.org/10.1243/JMES_JOUR_1963_005_009_02
- Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Math. Model., 37(7), 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016
- Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014a), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Math. Computat., 235, 512-529. https://doi.org/10.1016/j.amc.2014.03.028
- Eltaher, M.A., Hamed, M.A., Sadoun, A.M. and Mansour, A. (2014b), "Mechanical analysis of higher order gradient nanobeams", Appl. Math. Computat., 229, 260-272. https://doi.org/10.1016/j.amc.2013.12.076
- Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., Int. J., 4(1), 51-64. https://doi.org/10.12989/anr.2016.4.1.051
- Eltaher, M.A., Kabeel, A.M., Almitani, K.H. and Abdraboh, A.M. (2018a), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsyst. Technolog., 24(12), 4881-4893. https://doi.org/10.1007/s00542-018-3905-3
- Eltaher, M.A., Abdraboh, A.M. and Almitani, K.H. (2018b), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsyst. Technol., 24(9), 3925-3937. https://doi.org/10.1007/s00542-018-3910-6
- Guha, K., Kumar, M., Agarwal, S. and Baishya, S. (2015), "A modified capacitance model of RF MEMS shunt switch incorporating fringing field effects of perforated beam", Solid-State Electronics, 114, 35-42. https://doi.org/10.1016/j.sse.2015.07.008
- Guha, K., Laskar, N.M., Gogoi, H.J., Borah, A.K., Baishnab, K.L. and Baishya, S. (2017), "Novel analytical model for optimizing the pull-in voltage in a flexured MEMS switch incorporating beam perforation effect", Solid-State Electronics, 137, 85-94. https://doi.org/10.1016/j.sse.2017.08.007
- Guha, K., Laskar, N.M., Gogoi, H.J., Baishnab, K.L. and Rao, K.S. (2018), "A new analytical model for switching time of a perforated MEMS switch", Microsyst. Technol., 1-10. https://doi.org/10.1007/s00542-018-3803-8
- Heidari, A., Keikha, R., Haghighi, M.S. and Hosseinabadi, H. (2018), "Numerical study for vibration response of concrete beams reinforced by nanoparticles", Struct. Eng. Mech., Int. J., 67(3), 311-316. https://doi.org/10.12989/sem.2018.67.3.311
- Hieu, D. and Hai, N.Q. (2019), "Free vibration analysis of quintic nonlinear beams using equivalent linearization method with a weighted averaging", J. Appl. Computat. Mech., 5(1), 46-57. https://doi.org/10.22055/JACM.2018.24919.1217
- Humar, J. (2012), Dynamics of Structures, CRC press.
- Inman, D.J. (2014), Engineering Vibration, (4th Ed.), Pearson Education, Pearson, London, UK.
- Jeong, K.H. and Amabili, M. (2006), "Bending vibration of perforated beams in contact with a liquid", J. Sound Vib., 298(1-2), 404-419. https://doi.org/10.1016/j.jsv.2006.05.029
- Jeong, K.H., Ahn, B.K. and Lee, S.C. (2001), "Modal analysis of perforated rectangular plates in contact with water", Struct. Eng. Mech., Int. J., 12(2), 189-200. https://doi.org/10.12989/sem.2001.12.2.189
- Kim, J.H., Jeon, J.H., Park, J.S., Seo, H.D., Ahn, H.J. and Lee, J.M. (2015), "Effect of reinforcement on buckling and ultimate strength of perforated plates", Int. J. Mech. Sci., 92, 194-205. https://doi.org/10.1016/j.ijmecsci.2014.12.016
- Lee, Y.Y. (2016), "The effect of leakage on the sound absorption of a nonlinear perforated panel backed by a cavity", Int. J. Mech. Sci., 107, 242-252. https://doi.org/10.1016/j.ijmecsci.2016.01.019
- Loughlan, J. and Hussain, N. (2018), "The post-buckled failure of steel thin plate shear webs with stiffened centrally located cutouts", Thin-Wall. Struct., 128, 80-91. https://doi.org/10.1016/j.tws.2017.07.015
- Luschi, L. and Pieri, F. (2012), "A simple analytical model for the resonance frequency of perforated beams", Procedia Eng., 47, 1093-1096. https://doi.org/10.1016/j.proeng.2012.09.341
- Luschi, L. and Pieri, F. (2014), "An analytical model for the determination of resonance frequencies of perforated beams", J. Micromech. Microeng., 24(5), 055004. https://doi.org/10.1088/0960-1317/24/5/055004
- Luschi, L. and Pieri, F. (2016), "An analytical model for the resonance frequency of square perforated Lame-mode resonators", Sensors Actuators B: Chem., 222, 1233-1239. https://doi.org/10.1016/j.snb.2015.07.085
- Mali, K.D. and Singru, P.M. (2013), "Determination of the fundamental frequency of perforated rectangular plates: Concentrated negative mass approach for the perforation", Adv. Acoust. Vib. http://dx.doi.org/10.1155/2013/972409
- Mali, K.D. and Singru, P.M. (2015), "Determination of modal constant for fundamental frequency of perforated plate by Rayleigh's method using experimental values of natural frequency", Int. J. Acoust. Vib., 20(3), 177-184.
- Mirzabeigy, A. and Madoliat, R. (2019), "A Note on Free Vibration of a Double-beam System with Nonlinear Elastic Inner Layer", J. Appl. Computat. Mech., 5(1), 174-180. https://doi.org/10.22055/JACM.2018.25143.1232
- Mohammadimehr, M. and Alimirzaei, S. (2016), "Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM", Struct. Eng. Mech., Int. J., 59(3), 431-454. https://doi.org/10.12989/sem.2016.59.3.431
- Patel, S.N., Datta, P.K. and Sheikh, A.H. (2010), "Effect of harmonic in-plane edge loading on dynamic stability of stiffened shell panels with cutouts", Int. J. Appl. Mech., 2(4), 759-785. https://doi.org/10.1142/S1758825110000743
- Pedersen, M., Olthuis, W. and Bergveld, P. (1996), "On the mechanical behaviour of thin perforated plates and their application in silicon condenser microphones", Sensors Actuators A: Phys., 54(1-3), 499-504. https://doi.org/10.1016/S0924-4247(95)01189-7
- Kerid, R., Bourouina, H., Yahiaoui, R., Bounekhla, M. and Aissat, A. (2019), "Magnetic field effect on nonlocal resonance frequencies of structure-based filter with periodic square holes network", Physica E: Low-dimens. Syst. Nanostruct., 105, 83-89. https://doi.org/10.1016/j.physe.2018.05.021
- Rahman, M., Hasan, A.S. and Yeasmin, I.A. (2019), "Modified Multi-level Residue Harmonic Balance Method for Solving Nonlinear Vibration Problem of Beam Resting on Nonlinear Elastic Foundation", J. Appl. Computat. Mech., 5(4), 627-638. https://doi.org/10.22055/JACM.2018.26729.1352
- Rao, S.S. (2007), Vibration of Continuous Systems, John Wiley & Sons.
- Rastgoo, A., Ebrahimi, F. and Dizaji, A.F. (2006), "On the existence of periodic solution for equation of motion of thick beams having arbitrary cross section with tip mass under harmonic support motion", Int. J. Mech. Mater. Des., 3(1), 29-38. https://doi.org/10.1007/s10999-006-9011-1
- Rebeiz, G.M. (2004), RF MEMS: Theory, Design, and Technology, John Wiley & Sons.
- Sedighi, H.M. (2014), "Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory", Acta Astronautica, 95, 111-123. https://doi.org/10.1016/j.actaastro.2013.10.020
- Sedighi, H.M., Shirazi, K.H. and Noghrehabadi, A. (2012), "Application of recent powerful analytical approaches on the non-linear vibration of cantilever beams", Int. J. Nonlinear Sci. Numer. Simul., 13(7-8), 487-494. https://doi.org/10.1515/ijnsns-2012-0030
- Sedighi, H.M., Koochi, A., Daneshmand, F. and Abadyan, M. (2015a), "Non-linear dynamic instability of a double-sided nano-bridge considering centrifugal force and rarefied gas flow", Int. J. Non-Linear Mech., 77, 96-106. https://doi.org/10.1016/j.ijnonlinmec.2015.08.002
- Sedighi, H.M., Shirazi, K.H. and Changizian, M. (2015b), "Effect of the amplitude of vibrations on the pull-in instability of double-sided actuated microswitch resonators", J. Appl. Mech. Tech. Phys., 56(2), 304-312. https://doi.org/10.1134/S0021894415020169
- Shanmugam, N.E., Thevendran, V. and Tan, Y.H. (1999), "Design formula for axially compressed perforated plates", Thin-Wall. Struct., 34(1), 1-20. https://doi.org/10.1016/S0263-8231(98)00052-4
- She, G.L., Ren, Y.R., Xiao, W.S. and Liu, H.B. (2018a), "Study on thermal buckling and post-buckling behaviors of FGM tubes resting on elastic foundations", Struct. Eng. Mech., Int. J., 66(6), 729-736. https://doi.org/10.12989/sem.2018.66.6.729
- She, G.L., Yan, K.M., Zhang, Y.L., Liu, H.B. and Ren, Y.R. (2018b), "Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory", Eur. Phys. J. Plus, 133(9), 368. https://doi.org/10.1140/epjp/i2018-12196-5
- She, G.L., Ren, Y.R. and Yan, K.M. (2019a), "On snap-buckling of porous FG curved nanobeams", Acta Astronautica, 161, 475-484. https://doi.org/10.1016/j.actaastro.2019.04.010
- She, G.L., Ren, Y.R. and Yan, K.M. (2019b), "Hygro-thermal wave propagation in functionally graded double-layered nanotubes systems", Steel Compos. Struct., Int. J., 31(6), 641-653. https://doi.org/10.12989/scs.2019.31.6.641
- Srivastava, A.K.L., Datta, P.K. and Sheikh, A.H. (2003), "Prediction of Natural Frequencies of Stiffened Plates with Cutouts Subjected to In-plane Forces", In: Structural Stability And Dynamics: With CD-ROM (Volume 1), pp. 278-282. https://doi.org/10.1142/9789812776228_0036
- Tu, W.H., Chu, W.C., Lee, C.K., Chang, P.Z. and Hu, Y.C. (2013), "Effects of etching holes on complementary metal oxide semiconductor-microelectromechanical systems capacitive structure", J. Intel. Mater. Syst. Struct., 24(3), 310-317. https://doi.org/10.1177/1045389X12449917
- Wang, Y., Feng, C., Zhao, Z. and Yang, J. (2018), "Buckling of graphene platelet reinforced composite cylindrical shell with cutout", Int. J. Struct. Stabil. Dyn., 18(3), 1850040. https://doi.org/10.1142/S0219455418500402
- Yahiaoui, M., Tounsi, A., Fahsi, B., Bouiadjra, R.B. and Benyoucef, S. (2018), "The role of micromechanical models in the mechanical response of elastic foundation FG sandwich thick beams", Struct. Eng. Mech., Int. J., 68(1), 53-66. https://doi.org/10.12989/sem.2018.68.1.053
- Yettram, A.L. and Brown, C.J. (1985), "The elastic stability of square perforated plates", Comput. Struct., 21(6), 1267-1272. https://doi.org/10.1016/0045-7949(85)90180-4
- Yuan, W.B., Yu, N.T. and Li, L.Y. (2017), "Distortional buckling of perforated cold-formed steel channel-section beams with circular holes in web", Int. J. Mech. Sci., 126, 255-260. https://doi.org/10.1016/j.ijmecsci.2017.04.001
- Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2017), "A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams", Struct. Eng. Mech., Int. J., 64(2), 145-153. https://doi.org/10.12989/sem.2017.64.2.145
- Rebeiz, G.M. (2004), RF MEMS: Theory, Design, and Technology, John Wiley & Sons.
- Duncan, J.P. and Upfold, R.W. (1963), "Equivalent elastic properties of perforated bars and plates", J. Mech. Eng. Sci., 5(1), 53-65. https://doi.org/10.1243/JMES_JOUR_1963_005_009_02
Cited by
- Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads vol.34, pp.1, 2019, https://doi.org/10.12989/scs.2020.34.1.075
- Buckling and stability analysis of sandwich beams subjected to varying axial loads vol.34, pp.2, 2019, https://doi.org/10.12989/scs.2020.34.2.241
- On bending analysis of perforated microbeams including the microstructure effects vol.76, pp.6, 2020, https://doi.org/10.12989/sem.2020.76.6.765
- Forced vibration of a functionally graded porous beam resting on viscoelastic foundation vol.24, pp.1, 2019, https://doi.org/10.12989/gae.2021.24.1.091
- Vibration of multilayered functionally graded deep beams under thermal load vol.24, pp.6, 2019, https://doi.org/10.12989/gae.2021.24.6.545
- Finite element based stress and vibration analysis of axially functionally graded rotating beams vol.79, pp.1, 2019, https://doi.org/10.12989/sem.2021.79.1.023
- Experimental studies on vibration serviceability of composite steel-bar truss slab with steel girder under human activities vol.40, pp.5, 2019, https://doi.org/10.12989/scs.2021.40.5.663