DOI QR코드

DOI QR Code

Buckling behavior of functionally graded porous plates integrated with laminated composite faces sheets

  • Xu, Kuo (School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology) ;
  • Yuan, Yuan (School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology) ;
  • Li, Mingyang (School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology)
  • 투고 : 2019.04.15
  • 심사 : 2019.07.09
  • 발행 : 2019.09.10

초록

In this work, lightweight sandwich plates consisting of a functionally graded porous (FGP) core and two laminated composite face sheets resting on elastic foundation have been proposed. Three different profiles are considered for the distributions of porosities along core thickness. The main aim of this paper is the investigation of the buckling behavior of the proposed porous sandwich plates (PSPs) by reporting their critical mechanical loads and their corresponding mode shapes. A finite element method (FEM) based on first order shear deformation theories (FSDT) is developed to discretize governing equations for the buckling behavior of the proposed sandwich plates. The effects of porosity dispersion and volume, the numbers and angles of laminated layers, sandwich plate geometrical dimensions, elastic foundation coefficients, loading and boundary conditions are studied. The results show that the use of FGP core can offer a PSP with half weight core and only 5% reduction in critical buckling loads. Moreover, stacking sequences with only ${\pm}45$ orientation fibers offer the highest values of buckling loads.

키워드

참고문헌

  1. Afsharmanesh, B., Ghaheri, A. and Taheri-Behrooz, F. (2014), "Buckling and vibration of laminated composite circular plate on Winkler-type foundation", Steel Compos. Struct., Int. J., 17(1), 1-19. https://doi.org/10.12989/scs.2014.17.1.001
  2. Aram, E. and Mehdipour-Ataei, S. (2016), "A review on the micro- and nanoporous polymeric foams: Preparation and properties", Int. J. Polym. Mater. Polym. Biomater., 65, 358-375. https://doi.org/10.1080/00914037.2015.1129948
  3. Birmana, V. and Kardomateas, G.A. (2018), "Review of current trends in research and applications of sandwich structures", Compos. Part B Eng., 142, 221-240. https://doi.org/10.1016/j.compositesb.2018.01.027
  4. Cetkovic, M. and Vuksanovic, D. (2009), "Bending, free vibrations and buckling of laminated composite and sandwich plates using a layerwise displacement model", Compos. Struct., 88, 219-227. https://doi.org/10.1016/j.compstruct.2008.03.039
  5. Dash, P. and Singh, B.N. (2009), "Nonlinear free vibration of piezoelectric laminated composite plate", Finite Elem. Anal. Des., 45, 686-694. https://doi.org/10.1016/j.finel.2009.05.004
  6. Dehghan, M. and Baradaran, G.H. (2011), "Buckling and free vibration analysis of thick rectangular plates resting on elastic foundation using mixed finite element and differential quadrature method", Appl. Math. Comput., 218, 2772-2784. https://doi.org/10.1016/j.amc.2011.08.020
  7. Fattahi, A.M. and Safaei, B. (2017), "Buckling analysis of CNTreinforced beams with arbitrary boundary conditions", Microsyst. Technol., 23, 5079-5091. https://doi.org/10.1007/s00542-017-3345-5
  8. Feyzi, M.R. and Khorshidvand, A.R. (2017), "Axisymmetric postbuckling behavior of saturated porous circular plates", Thin Wall. Struct., 112, 149-158. https://doi.org/10.1016/j.tws.2016.11.026
  9. Frikha, A., Zghal, S. and Dammak, F. (2018), "Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element", Aerosp. Sci. Technol., 78, 438-451. https://doi.org/10.1016/j.ast.2018.04.048
  10. Ghanati, P. and Safaei, B. (2019), "Elastic buckling analysis of polygonal thin sheets under compression", Indian J. Phys., 93, 47-52. https://doi.org/10.1007/s12648-018-1254-9
  11. Guessas, H., Zidour, M., Meradjah, M., Tounsi, A. (2018), "The critical buckling load of reinforced nanocomposite porous plates", Struct. Eng. Mech., Int. J., 67(2), 115-123. https://doi.org/10.12989/sem.2018.67.2.115
  12. Jabbari, M., Joubaneh, E.F., Khorshidvand, A.R. and Eslami, M.R. (2013), "Buckling analysis of porous circular plate with piezoelectric actuator layers under uniform radial compression", Int. J. Mech. Sci., 70, 50-56. https://doi.org/10.1016/j.ijmecsci.2013.01.031
  13. Jabbari, M., Hashemitaheri, M., Mojahedin, A. and Eslami, M.R. (2014), "Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials", J. Therm. Stress., 37, 202-220. https://doi.org/10.1080/01495739.2013.839768
  14. Jalali, S.K. and Heshmati, M. (2016), "Buckling analysis of circular sandwich plates with tapered cores and functionally graded carbon nanotubes-reinforced composite face sheets", Thin-Wall. Struct., 100, 14-24. https://doi.org/10.1016/j.tws.2015.12.001
  15. Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel Compos. Struct., Int. J., 29(3), 349-362. https://doi.org/10.12989/scs.2018.29.3.349
  16. Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., Int. J., 20(5), 595-605. https://doi.org/10.12989/sss.2017.20.5.595
  17. Malekzadeh, P. and Karami, G. (2008), "A mixed differential quadrature and finite element free vibration and buckling analysis of thick beams on two-parameter elastic foundations", Appl. Math. Model., 32, 1381-1394. https://doi.org/10.1016/j.apm.2007.04.019
  18. Mojahedin, A., Jabbari, M., Khorshidvand, A.R. and Eslami, M.R. (2016), "Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory", Thin Wall. Struct., 99, 83-90. https://doi.org/10.1016/j.tws.2015.11.008
  19. Moradi-Dastjerdi, R. and Malek-Mohammadi, H. (2017a), "Free vibration and buckling analyses of functionally graded nanocomposite plates reinforced by carbon nanotube", Mech. Adv. Compos. Struct., 4, 59-73. https://doi.org/10.22075/MACS.2016.496
  20. Moradi-Dastjerdi, R. and Malek-Mohammadi, H. (2017b), "Biaxial buckling analysis of functionally graded nanocomposite sandwich plates reinforced by aggregated carbon nanotube using improved high-order theory", J. Sandw. Struct. Mater., 19, 736-769. https://doi.org/10.1177/1099636216643425
  21. Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2016), "Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube", Steel Compos. Struct., Int. J., 22, 277-299. https://doi.org/10.12989/scs.2016.22.2.277
  22. Moradi-Dastjerdi, R. and Pourasghar, A. (2016), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by wavy carbon nanotube under an impact load", J. Vib. Control, 22, 1062-1075. https://doi.org/10.1177/1077546314539368
  23. Nguyen, K., Thai, H.T. and Vo, T. (2015), "A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 91-120. https://doi.org/10.12989/scs.2015.18.1.091
  24. Pandit, M.K., Singh, B.N. and Sheikh, A.H. (2008), "Buckling of laminated sandwich plates with soft core based on an improved higher order zigzag theory", Thin-Wall. Struct., 46, 1183-1191. https://doi.org/10.1016/j.tws.2008.03.002
  25. Pourasghar, A. and Chen, Z. (2016), "Thermoelastic response of CNT reinforced cylindrical panel resting on elastic foundation using theory of elasticity", Compos. Part B Eng., 99, 436-444. https://doi.org/10.1016/j.compositesb.2016.06.028
  26. Pourasghar, A. and Chen, Z. (2019a), "Effect of hyperbolic heat conduction on the linear and nonlinear vibration of CNT reinforced size-dependent functionally graded microbeams", Int. J. Eng. Sci., 137, 57-72. https://doi.org/10.1016/j.ijengsci.2019.02.002
  27. Pourasghar, A. and Chen, Z. (2019b), "Hyperbolic heat conduction and thermoelastic solution of functionally graded CNT reinforced cylindrical panel subjected to heat pulse", Int. J. Solids Struct., 163, 117-129. https://doi.org/10.1016/j.ijsolstr.2018.12.030
  28. Pourasghar, A. and Chen, Z. (2019c), "Nonlinear vibration and modal analysis of FG nanocomposite sandwich beams reinforced by aggregated CNTs", Polym. Eng. Sci., https://doi.org/10.1002/pen.25119
  29. Pourasghar, A. and Kamarian, S. (2015), "Dynamic stability analysis of functionally graded nanocomposite non-uniform column reinforced by carbon nanotube", J. Vib. Control, 21, 2499-2508. https://doi.org/10.1177/1077546313513625
  30. Pourasghar, A., Moradi-Dastjerdi, R., Yas, M.H., Ghorbanpour Arani, A. and Kamarian, S. (2018), "Three-dimensional analysis of carbon nanotube-reinforced cylindrical shells with temperature-dependent properties under thermal environment", Polym. Compos., 39, 1161-1171. https://doi.org/10.1002/pc.24046
  31. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press.
  32. Shafiei, N. and Kazemi, M. (2017), "Buckling analysis on the bidimensional functionally graded porous tapered nano-/microscale beams", Aerosp. Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019
  33. Shahsavari, D., Karami, B. and Li, L. (2018), "A high-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., Int. J., 29(1), 53-66. https://doi.org/10.12989/scs.2018.29.1.053
  34. Safaei, B., Moradi-Dastjerdi, R., Behdinan, K. and Chu, F. (2019a), "Critical buckling temperature and force in porous sandwich plates with CNT-reinforced nanocomposite layers", Aerosp. Sci. Technol., 91, 175-185. https://doi.org/10.1016/j.ast.2019.05.020
  35. Safaei, B., Moradi-Dastjerdi, R., Qin, Z. and Chu, F. (2019b), "Frequency-dependent forced vibration analysis of nanocomposite sandwich plate under thermo-mechanical loads", Compos. Part B Eng., 161, 44-54. https://doi.org/10.1016/j.compositesb.2018.10.049
  36. Shokravi, M. (2017), "Buckling of sandwich plates with FG-CNTreinforced layers resting on orthotropic elastic medium using Reddy plate theory", Steel Compos. Struct., Int. J., 23(6), 623-631. https://doi.org/10.12989/scs.2017.23.6.623
  37. Shokri-Oojghaz, R., Moradi-Dastjerdi, R., Mohammadi, H. and Behdinan, K. (2019), "Stress distributions in nanocomposite sandwich cylinders reinforced by aggregated carbon nanotube", Polym. Compos., 40, E1918-E1927. https://doi.org/10.1002/pc.25206
  38. Singh, S., Singh, J. and Shukla, K. (2013), "Buckling of laminated composite plates subjected to mechanical and thermal loads using meshless collocations", J. Mech. Sci. Technol., 27, 327-336. https://doi.org/10.1007/s12206-012-1249-y
  39. Tang, H., Li, L. and Hu, Y. (2018), "Buckling analysis of twodirectionally porous beam", Aerosp. Sci. Technol., 78, 471-479. https://doi.org/10.1016/j.ast.2018.04.045
  40. Timoshenko, S. and Gere, J. (1961), Theory of Elastic Stability, McGraw-Hill, New York, NY, USA.
  41. Topal, U. (2012), "Thermal buckling load optimization of laminated plates with different intermediate line supports", Steel Compos. Struct., Int. J., 13(3), 207-223. https://doi.org/10.12989/scs.2012.13.3.207
  42. Tornabene, F. and Reddy, J.N. (2013), "FGM and Laminated Doubly-Curved and Degenerate Shells Resting on Nonlinear Elastic Foundations: A GDQ Solution for Static Analysis with a Posteriori Stress and Strain Recovery", J. Indian Inst. Sci., 93, 635-688.
  43. Tornabene, F., Methods, C., Mech, A. and Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a fourparameter power-law distribution", Comput. Methods Appl. Mech. Eng., 198, 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011
  44. Tornabene, F., Liverani, A. and Caligiana, G. (2011), "FGM and laminated doubly curved shells and panels of revolution with a free-form meridian: A 2-D GDQ solution for free vibrations", Int. J. Mech. Sci., 53, 446-470. https://doi.org/10.1016/j.ijmecsci.2011.03.007
  45. Tornabene, F., Fantuzzi, N., Viola, E. and Batra, R.C. (2015), "Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory", Compos. Struct., 119, 67-89. https://doi.org/10.1016/j.compstruct.2014.08.005
  46. Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B Eng., 89, 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016
  47. Trabelsi, S., Frikha, A., Zghal, S. and Dammak, F. (2019), "A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells", Eng. Struct., 178, 444-459. https://doi.org/10.1016/j.engstruct.2018.10.047
  48. Tran, L.V., Thai, C.H. and Nguyen-Xuan, H. (2013), "An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates", Finite Elem. Anal. Des., 73, 65-76. https://doi.org/10.1016/j.finel.2013.05.003
  49. Yu, T., Yin, S., Bui, T.Q., Xia, S., Tanaka, S. and Hirose, S. (2016), "NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method", Thin Wall. Struct., 101, 141-156. https://doi.org/10.1016/j.tws.2015.12.008
  50. Zarei, A. and Khosravifard, A. (2019), "A meshfree method for static and buckling analysis of shear deformable composite laminates considering continuity of interlaminar transverse shearing stresses", Compos. Struct., 209, 206-218. https://doi.org/10.1016/j.compstruct.2018.10.077
  51. Zghal, S., Frikha, A. and Dammak, F. (2018), "Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels", Compos. Part B Eng., 150, 165-183. https://doi.org/10.1016/j.compositesb.2018.05.037
  52. Zhang, L.W., Lei, Z.X. and Liew, K.M. (2015), "Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach", Compos. Part B Eng., 75, 36-46. https://doi.org/10.1016/j.compositesb.2015.01.033
  53. Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates", Compos. Struct., 90, 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005

피인용 문헌

  1. Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.157