References
- Gilchrest BA. Skin aging and photoaging: an overview. Journal of the American Academy of Dermatology. 1989;21(3):610-3. https://doi.org/10.1016/S0190-9622(89)70227-9
- Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, Voorhees JJ. Mechanisms of photoaging and chronological skin aging. Archives of dermatology. 2002;138(11):1462-70.
- Fisher GJ, Wang ZQ, Datta SC, Varani J, Kang S, Voorhees JJ. Pathophysiology of premature skin aging induced by ultraviolet light. New England Journal of Medicine. 1997;337(20):1419-29. https://doi.org/10.1056/NEJM199711133372003
- Helfrich YR, Sachs DL, Voorhees JJ. Overview of skin aging and photoaging. Dermatology nursing. 2008;20(3):177.
- Newton VL, Mcconnell JC, Hibbert SA, Graham HK, Watson RE. Skin aging: molecular pathology, dermal remodelling and the imaging revolution. G Ital Dermatol Venereol. 2015; 150(6):665-74.
- Cheng LY, Sun XM, Tang MY, Jin R, Cui WG, Zhang YG. An update review on recent skin fillers. Plast Aesthet Res. 2016;3:92-9. https://doi.org/10.20517/2347-9264.2015.124
- Beasley KL, Weiss MA, Weiss RA. Hyaluronic acid fillers: a comprehensive review. Facial Plastic Surgery. 2009;25(02):086-094. https://doi.org/10.1055/s-0029-1220647
- Fakhari A, Berkland C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta biomaterialia. 2013;9(7):7081-92. https://doi.org/10.1016/j.actbio.2013.03.005
- Leach JB, Schmidt CE. Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. Biomaterials. 2005; 26(2):125-35. https://doi.org/10.1016/j.biomaterials.2004.02.018
- Maleki A, Kjoniksen AL, Nystrom B. Characterization of the chemical degradation of hyaluronic acid during chemical gelation in the presence of different cross-linker agents. Carbohydrate research. 2007;342(18):2776-92. https://doi.org/10.1016/j.carres.2007.08.021
- Schante CE, Zuber G, Herlin C, Vandamme TF. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydrate polymers. 2011;85(3):469-89. https://doi.org/10.1016/j.carbpol.2011.03.019
- Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: structure and function. Acta biomaterialia. 2009;5(1):1-13. https://doi.org/10.1016/j.actbio.2008.09.013
- Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Advanced drug delivery reviews. 2016;97:4-27. https://doi.org/10.1016/j.addr.2015.11.001
- Carter DR, Beaupre GS, Wong M, Smith RL, Andriacchi TP, Schurman DJ. The mechanobiology of articular cartilage development and degeneration. Clinical Orthopaedics and Related Research. 2004;427:S69-S77. https://doi.org/10.1097/01.blo.0000144970.05107.7e
- Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports health. 2009;1(6):461-8. https://doi.org/10.1177/1941738109350438
- Hay ED. Cell biology of extracellular matrix ed. New York:Plenum Press; 1991. pp. 419-62.
- Tavsanli B, Okay O. Preparation and fracture process of high strength hyaluronic acid hydrogels cross-linked by ethylene glycol diglycidyl ether. Reactive and Functional Polymers. 2016;109:42-51. https://doi.org/10.1016/j.reactfunctpolym.2016.10.001
- Werb Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell. 1997; 91(4):439-42. https://doi.org/10.1016/S0092-8674(00)80429-8
- Baek J, Fan Y, Jeong SH, Lee HY, Jung HD, Kim HE, Kim S, Jang TS. Facile strategy involving low-temperature chemical cross-linking to enhance the physical and biological properties of hyaluronic acid hydrogel. Carbohydrate polymers. 2018;202:545-53. https://doi.org/10.1016/j.carbpol.2018.09.014
- Wang MO, Etheridge JM, Thompson JA, Vorwald CE, Dean D, Fisher JP. Evaluation of the in vitro cytotoxicity of crosslinked biomaterials. Biomacromolecules. 2013;14(5):1321-9. https://doi.org/10.1021/bm301962f