과제정보
연구 과제 주관 기관 : National Research Foundation of Korea
참고문헌
- Z. LI, T. LIN, AND X. WU, New cartesian grid methods for interface problems using the finite element formulation, Numerische Mathematik, 96 (2003), pp. 61-98. https://doi.org/10.1007/s00211-003-0473-x
- Z. LI, T. LIN, Y. LIN, AND R. C. ROGERS, An immersed finite element space and its approximation capability, Numerical Methods for Partial Differential Equations, 20 (2004), pp. 338-367. https://doi.org/10.1002/num.10092
- H. JI, J. CHEN, AND Z. LI, A symmetric and consistent immersed finite element method for interface problems, Journal of Scientific Computing, 61 (2014), pp. 533-557. https://doi.org/10.1007/s10915-014-9837-x
- T. LIN, Y. LIN, AND X. ZHANG, Partially penalized immersed finite element methods for elliptic interface problems, SIAM Journal on Numerical Analysis, 53 (2015), pp. 1121-1144. https://doi.org/10.1137/130912700
- D. Y. KWAK AND J. LEE, A modified P1-immersed finite element method, International Journal of Pure and Applied Mathematics, 104 (2015), pp. 471-494.
- D. Y. KWAK, S. JIN, AND D. KYEONG, A stabilized P1-nonconforming immersed finite element method for the interface elasticity problems, ESAIM: Mathematical Modelling and Numerical Analysis, 51 (2017), pp. 187-207. https://doi.org/10.1051/m2an/2016011
- I. BABUS KA, The finite element method for elliptic equations with discontinuous coefficients, Computing, 5 (1970), pp. 207-213. https://doi.org/10.1007/BF02248021
- T. BELYTSCHKO, C. PARIMI, N. MOES, N. SUKUMAR, AND S. USUI, Structured extended finite element methods for solids defined by implicit surfaces, International journal for Numerical Methods in Engineering, 56 (2003), pp. 609-635. https://doi.org/10.1002/nme.686
- T. BELYTSCHKO AND T. BLACK, Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering, 45 (1999), pp. 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
- P. KRYSL AND T. BELYTSCHKO, An efficient linear-precision partition of unity basis for unstructured meshless methods, Communications in Numerical Methods in Engineering, 16 (2000), pp. 239-255. https://doi.org/10.1002/(SICI)1099-0887(200004)16:4<239::AID-CNM322>3.0.CO;2-W
- G. LEGRAIN, N. MOES, AND E. VERRON, Stress analysis around crack tips in finite strain problems using the extended finite element method, International Journal for Numerical Methods in Engineering, 63 (2005), pp. 290-314. https://doi.org/10.1002/nme.1291
- N. MOE S, J. DOLBOW, AND T. BELYTSCHKO, A finite element method for crack growth without remeshing, International journal for numerical methods in engineering, 46 (1999), pp. 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
- M. CROUZEIX AND P.-A. RAVIART, Conforming and nonconforming finite element methods for solving the stationary stokes equations I, Revue Francaise D'automatique Informatique Recherche Operationnelle. Mathematique, 7 (1973), pp. 33-75.
- D. Y. KWAK, K. T. WEE, AND K. S. CHANG, An analysis of a broken P1-nonconforming finite element method for interface problems, SIAM Journal on Numerical Analysis, 48 (2010), pp. 2117-2134. https://doi.org/10.1137/080728056
- S. H. CHOU, D. Y. KWAK, AND K. T. WEE, Optimal convergence analysis of an immersed interface finite element method, Advances in Computational Mathematics, 33 (2010), pp. 149-168. https://doi.org/10.1007/s10444-009-9122-y
- D. N. ARNOLD, An interior penalty finite element method with discontinuous elements, SIAM journal on Numerical Analysis, 19 (1982), pp. 742-760. https://doi.org/10.1137/0719052
- D. N. ARNOLD, F. BREZZI, B. COCKBURN, AND D. MARINI, Discontinuous Galerkin methods for elliptic problems, in Discontinuous Galerkin Methods, Springer, 2000, pp. 89-101.
- C. DAWSON, S. SUN, AND M. F. WHEELER, Compatible algorithms for coupled flow and transport, Computer Methods in Applied Mechanics and Engineering, 193 (2004), pp. 2565-2580. https://doi.org/10.1016/j.cma.2003.12.059
- K. S. CHANG AND D. Y. KWAK, Discontinuous bubble scheme for elliptic problems with jumps in the solution, Computer Methods in Applied Mechanics and Engineering, 200 (2011), pp. 494-508. https://doi.org/10.1016/j.cma.2010.06.029
- I. K. GWANGHYUN JO, DO Y. KWAK, Two discontinuous bubble schemes for elliptic interface problems with jumps, preprint.
- T. LIN AND X. ZHANG, Linear and bilinear immersed finite elements for planar elasticity interface problems, Journal of Computational and Applied Mathematics, 236 (2012), pp. 4681-4699. https://doi.org/10.1016/j.cam.2012.03.012
- T. LIN, D. SHEEN, AND X. ZHANG, A locking-free immersed finite element method for planar elasticity interface problems, Journal of Computational Physics, 247 (2013), pp. 228-247. https://doi.org/10.1016/j.jcp.2013.03.053
- J. H. BRAMBLE AND J. T. KING, A finite element method for interface problems in domains with smooth boundaries and interfaces, Advances in Computational Mathematics, 6 (1996), pp. 109-138. https://doi.org/10.1007/BF02127700
- Z. CHEN AND J. ZOU, Finite element methods and their convergence for elliptic and parabolic interface problems, Numerische Mathematik, 79 (1998), pp. 175-202. https://doi.org/10.1007/s002110050336
- J. DOUGLAS AND T. DUPONT, Interior penalty procedures for elliptic and parabolic galerkin methods, in Computing methods in applied sciences, Springer, 1976, pp. 207-216.
- C. E. BAUMANN AND J. T. ODEN, A discontinuous hp finite element method for convectiondiffusion problems, Computer Methods in Applied Mechanics and Engineering, 175 (1999), pp. 311-341. https://doi.org/10.1016/S0045-7825(98)00359-4
- S. H. CHOU, D. Y. KWAK, AND K. Y. KIM, Mixed finite volume methods on nonstaggered quadrilateral grids for elliptic problems, Mathematics of Computation, 72 (2003), pp. 525-539. https://doi.org/10.1090/S0025-5718-02-01426-6
-
S.-H. CHOU AND S. TANG, Conservative
$P_1$ conforming and nonconforming Galerkin fems: effective flux evaluation via a nonmixed method approach, SIAM Journal on Numerical Analysis, 38 (2000), pp. 660-680. https://doi.org/10.1137/S0036142999361517 - B. COURBET AND J. CROISILLE, Finite volume box schemes on triangular meshes, ESAIM: Mathematical Modelling and Numerical Analysis, 32 (1998), pp. 631-649. https://doi.org/10.1051/m2an/1998320506311
- F. BREZZI, J. DOUGLAS JR, AND L. D. MARINI, Two families of mixed finite elements for second order elliptic problems, Numerische Mathematik, 47 (1985), pp. 217-235. https://doi.org/10.1007/BF01389710
- F. BREZZI AND M. FORTIN, Mixed and hybrid finite element methods, vol. 15, Springer-Verlag, New York, 1991.
- P. A. RAVIART AND J. M. THOMAS, A mixed finite element method for 2-nd order elliptic problems, Mathematical aspects of finite element methods, (1977), pp. 292-315.
- D. N. ARNOLD AND F. BREZZI, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, ESAIM: Mathematical Modelling and Numerical Analysis, 19 (1985), pp. 7-32. https://doi.org/10.1051/m2an/1985190100071
- R. S. FALK, Nonconforming finite element methods for the equations of linear elasticity, Mathematics of Computation, 57 (1991), pp. 529-550. https://doi.org/10.1090/S0025-5718-1991-1094947-6
- R. KOUHIA AND R. STENBERG, A linear nonconforming finite element method for nearly incompressible elasticity and stokes flow, Computer Methods in Applied Mechanics and Engineering, 124 (1995), pp. 195-212. https://doi.org/10.1016/0045-7825(95)00829-P
- P. HANSBO AND M. G. LARSON, Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity, ESAIM: Mathematical Modelling and Numerical Analysis, 37 (2003), pp. 63-72. https://doi.org/10.1051/m2an:2003020
-
S. C. BRENNER, Korn's inequalities for piecewise
$H_1$ vector fields, Mathematics of Computation, (2004), pp. 1067-1087. - R. FEDORENKO, The speed of convergence of one iterative process, USSR Computational Mathematics and Mathematical Physics, 4 (1964), pp. 559-564.
- W. HACKBUSCH, Multi-grid methods and applications, vol. 4, Springer-Verlag, Berlin, 1985.
- S. F. MCCORMICK, Multigrid methods, vol. 3, SIAM, 1987.
- R. NICOLAIDES, On some theoretical and practical aspects of multigrid methods, Mathematics of Computation, 33 (1979), pp. 933-952. https://doi.org/10.1090/S0025-5718-1979-0528048-4
- J. H. BRAMBLE AND J. E. PASCIAK, New convergence estimates for multigrid algorithms, Mathematics of Computation, 49 (1987), pp. 311-329. https://doi.org/10.1090/S0025-5718-1987-0906174-X
- S. C. BRENNER, An optimal-order multigrid method for P1 nonconforming finite elements, mathematics of computation, 52 (1989), pp. 1-15. https://doi.org/10.1090/S0025-5718-1989-0946598-X
- J. H. BRAMBLE, J. E. PASCIAK, AND J. XU, The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms, Mathematics of Computation, 56 (1991), pp. 1-34. https://doi.org/10.1090/S0025-5718-1991-1052086-4
- D. BRAESS, W. DAHMEN, AND C. WIENERS, A multigrid algorithm for the mortar finite element method, SIAM Journal on Numerical Analysis, 37 (1999), pp. 48-69. https://doi.org/10.1137/S0036142998335431
- G. JO AND D. Y. KWAK, An IMPES scheme for a two-phase flow in heterogeneous porous media using a structured grid, Computer Methods in Applied Mechanics and Engineering, (2017).
- D. Y. K. GWANGHYUN JO, Geometric multigrid algorithms for elliptic interface problems using structured grids, Numerical Algorithms, (2018).
- J. H. BRAMBLE AND J. E. PASCIAK The analysis of smoothers for multigrid algorithms, Mathematics of Computation, 58 (1992), pp. 467-488. https://doi.org/10.1090/S0025-5718-1992-1122058-0