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Abstract: I investigate the origin of arc degeneracies in satellite microlens parallax πE measurements with
only late time data, e.g., t > t0+ tE as seen from the satellite. I show that these are due to partial overlap
of a series of osculating, exactly circular, degeneracies in the πE plane, each from a single measurement.
In events with somewhat earlier data, these long arcs break up into two arclets, or (with even earlier data)
two points, because these earlier measurements give rise to intersecting rather than osculating circles. The
two arclets (or points) then constitute one pair of degeneracies in the well-known four-fold degeneracy of
space-based microlens parallax. Using this framework of intersecting circles, I show that next-generation
microlens satellite experiments could yield good πE determinations with only about five measurements
per event, i.e., about 30 observations per day to monitor 1500 events per year. This could plausibly be
done with a small (hence cheap, in the spirit of Gould & Yee 2012) satellite telescope, e.g., 20 cm.
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1. INTRODUCTION

In his original paper on space-based microlens parallax
measurements, Refsdal (1966) already noted that they
were subject to a discrete four-fold degeneracy. Two ob-
servatories, one on Earth and one on a satellite, would
each see a single-lens single-source (1L1S) microlens-
ing event, characterized by three Paczyński (1986) pa-
rameters (t0, u0, tE), but these parameters would differ
due to their different viewpoints. Here t0 is the time
of maximum magnification, u0 is the impact parame-
ter normalized to the Einstein radius θE, and tE is the
Einstein timescale,

tE ≡
θE
µgeo

; θ2E = κMπrel, (1)

where M is the mass of the lens, (πrel,µgeo) are the
lens-source relative (parallax, proper motion) and κ ≡
4G/c2AU ≃ 8.14masM−1

⊙ . In more modern language
(Gould 2000, 2004; Gould & Horne 2013), the microlens
parallax vector,

πE ≡
πrel
θE

µgeo

µgeo

, (2)

could be determined from the inferred offset in the Ein-
stein ring

πE =
AU

D⊥

(∆τ ′,∆β′); (3)

where

∆τ ′ =
t0,sat − t0,⊕

tE
; ∆β′ = u0,sat − u0,⊕, (4)
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and D⊥ is the two dimensional (2-D) vector offset from
Earth to the satellite projected on the sky (approxi-
mated as a constant during the observations). The first
component is then along this direction and the second
is perpendicular to it. The four-fold degeneracy arises
from the fact that only the magnitude (but not the sign)
of u0 can generally be inferred from the light curve. See
Figure 1 from Gould (1994).

The great majority of subsequent theoretical work
on space-based microlens parallax (and it degenera-
cies) took place within the context of events for which
there were reasonably complete light-curve measure-
ments from both Earth and the satellite, so that in
particular it was possible to measure (t0, u0)sat. For ex-
ample, while Refsdal (1966) had suggested observations
from a second satellite to break the four-fold degener-
acy, Gould (1995) argued that this might be possible
from a single satellite because the velocity difference
between the two observatories would yield differences
in tE that would allow one to distinguish among the
four values of ∆β′

±,±, where the first subscript refers to
the sign of u0,⊕ and the second to u0,sat. This was soon
shown to be substantially more efficient for microlens-
ing events toward the ecliptic poles (Boutreux & Gould
1996) than toward the ecliptic (Gaudi & Gould 1997).

A key issue in these early years appeared to be
the much greater difficulty in measuring u0 compared
to t0 for 1L1S light curves. This arises from the fact
that the derivative of the microlensed flux with respect
to only one parameter (t0) is odd (antisymmetric) in
time, while there are four with derivatives that are even
(symmetric) in time (u0, tE, fs, fb). Here (fs, fb) are the
source flux and blended flux. Hence, u0 is strongly cor-
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related with other parameters while t0 is not. Gould
(1995) already recognized that the interplay of discrete
and continuous degeneracies in the direction orthogo-
nal to D⊥ was a major issue for space-based paral-
laxes because it seemed to require very high signal-to-
noise ratio space-based light curves, which are intrinsi-
cally expensive. He noted that if the space and ground
cameras had nearly identical responses, then this issue
could be largely resolved. This is because fs would
be known to be the same a priori, which would allow
∆β′ = (u0,sat − u0,⊕) to be measured much more pre-
cisely than either impact parameter separately. How-
ever, this was believed to be extremely difficult even
for optical observations and essentially impossible for
the only photometric telescope then planned for solar
orbit, namely SIRTF (a.k.a., Spitzer), whose shortest
wavelength (3.6µm) was essentially unobservable from
the ground.

Pressed by M. Werner (1998, private communica-
tion) to find a solution to this problem that could be
applied to Spitzer, Gould (1999) developed the idea of
combining separate one-dimensional (1-D) parallax in-
formation from Earth and Spitzer to yield robust 2-
D microlens parallaxes. That is, according to Equa-
tion (3), the component of πE along D⊥ could be well
measured even if u0,sat (and so ∆β′) was not. There-
fore, if there were additional 1-D information from the
ground (not parallel to D⊥), then a relative handful of
space-based measurements (enough to measure t0,sat)
would be sufficient.

In fact, Gould et al. (1994) had already pointed
out that the annual parallax effect (Gould 1992) could
measure the component of πE parallel to Earth’s in-
stantaneous acceleration at t0, even when the orthog-
onal component was essentially unmeasurable.1 Thus,
unless Earth’s acceleration at t0 is closely aligned with
D⊥, the two 1-D parallaxes (each by itself almost use-
less) could be combined to yield a 2-D parallax. This led
to a proposal for target-of-opportunity observations to-
ward the Magellanic Clouds (where these two directions
are generally not aligned) and resulted in a successful
measurement based on just four Spitzer epochs (Dong
et al. 2007).

The extremely high cost (hence low expected num-
ber) of space-based measurements led Gould & Yee
(2012) to suggest a radically different idea for “cheap
space-based microlens parallaxes”. This required two
special conditions. First, the event must be relatively
high-magnification as seen from Earth (u0,⊕ ≪ 1).
Second, it must be observed from the satellite at a
time tsat ≃ t0,⊕. However, if these two conditions
could be met (and if there were an additional late-time
measurement to determine the baseline flux, fbase,sat),
then one could determine the flux difference ∆fsat =
fsat(tsat)−fbase,sat, and thus the magnification Asat and

1Subsequently, Smith et al. (2003) studied this much more deeply
and showed that the parallel component is third order in time
while the perpendicular component is fourth order.

corresponding offset in the Einstein ring usat:

Asat = 1 +
∆fsat
fs,sat

; usat =

√

√

√

√

√

2

(

1
√

1− A−2
sat

− 1

)

.

(5)
Then, in the approximation u0,⊕ → 0, the magnitude of
the parallax vector is simply πE = (AU/D⊥)usat. There
is then no information at all about the direction (φπ)
of πE, but this direction is not needed to determine the
main properties of the lens, i.e., its mass M = θE/κπE
and lens-source relative parallax πrel = θEπE.

Of course, this requires that fs,sat be known, which
in the previous conception required a good-coverage,
high-precision, space-based light curve. However, in the
meantime, Yee et al. (2012) had established that mi-
crolensing source fluxes of sparsely covered light curves
could be determined from color-color relations linked to
well covered light curves. Hence, Gould & Yee (2012)
suggested that these relations be applied to space-based
observations as well.

Subsequently, Shin et al. (2018) demonstrated that
this approach works in practice. In particular, their
Figure 3, which shows a circle nearly centered on the
origin (excellent measurement of πE, no information on
φπ) was a major inspiration for the present work.

For 2014–2019, there were (or will be) major
Spitzer microlens parallax campaigns toward the Galac-
tic bulge. During the first (pilot) year, the focus was on
obtaining “full-coverage” light curves from Spitzer, in
particular capturing the peak, in order to demonstrate
the feasibility of the method. See, for example, Fig-
ure 1 from Yee et al. (2015a) and compare to Figure 1
of Gould (1994). However, in subsequent years, the cri-
teria for event selection were substantially relaxed in
pursuit of the goal of measuring the Galactic distribu-
tion of planets (Yee et al. 2015b). In particular, events
were frequently chosen even if the Spitzer observations
were likely to begin well after peak. As discussed above,
such light-curve fragments cannot by themselves yield
useful information about (t0, u0)sat. However, it was an-
ticipated (and subsequently confirmed, Calchi Novati et
al. 2015) that fs,sat can be derived from color-color rela-
tions (provided that fs,⊕ is well measured from Earth).

Nevertheless, despite the fact that there are now
several hundred Spitzer light curves that begin after
peak, there has not yet been a systematic study of what
is the character of the parallax information that is ac-
tually garnered from these light curves. Rather, Spitzer
and ground-based data are generally combined in a sin-
gle fit, often after considering models based on ground-
based data alone. However, an important exception to
this approach was taken by Jung et al. (2019). Their
“Spitzer-only” parallax contours (Figure 5, left panels)
look very much like arcs of a circle, but in contrast to
the circles of Shin et al. (2018), they are not centered on
the origin. This suggests that the parallax information
content of late-time satellite light curves may be intrin-
sically circular. If so, a deeper understanding of the
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origin of this effect will be valuable for both planning
and interpreting microlensing parallax observations. I
therefore undertake such an investigation here.

2. IDEALIZED CASE: SINGLE OBSERVATION AT

LATE-TIME EPOCH

Let us consider a high-magnification (i.e., u0,⊕ ≪ 1)
microlensing event, with peak time t0,⊕ as seen from
Earth. And let us assume that there are two late-time
measurements from a satellite, one at tsat and the other
at baseline. As discussed in Section 1, given a color-
color relation, this leads via Equation (5) to successive
determinations of ∆fsat, Asat, and usat(Asat).

I follow Calchi Novati & Scarpetta (2016) in work-
ing within a heliocentric framework, but present the
results in geocentric quantities, in particular the paral-
lax πE and Einstein timescale, tE, from which I omit
the “geocentric subscripts”. The geocentric and helio-
centric projected velocities are given by

ṽ =
πE

π2
E

AU

tE
; ṽhel = ṽ + v⊕, (6)

where v⊕ is the 2-D vector representing the instanta-
neous motion of Earth relative to the Sun at t0,⊕ pro-
jected on the sky.

Let D be the 2-D separation vector (again pro-
jected on the sky) between Earth’s position at t0,⊕ and
the satellite’s position at tsat. (Notice that this is dif-
ferent than the definition of D⊥ given in Section 1, and
for this reason I use a different symbol.) And let

∆t = tsat − t0; ∆τ =
∆t

tE
. (7)

Then,

u2sat =

∣

∣

∣

∣

ṽhel∆t−D

r̃E

∣

∣

∣

∣

2

=

∣
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∣

ṽ∆t− (D− v⊕∆t)

AU/πE

∣

∣

∣

∣

2

, (8)

u2sat =

∣

∣

∣

∣

πE∆τ

πE
−QπE

∣

∣

∣

∣

2

, (9)

where r̃E ≡ AU/πE is the projected Einstein radius in
the observer plane and

Q ≡
D− v⊕∆t

AU
. (10)

That is,

u2sat = (∆τ)2 − 2Q · πE∆τ +Q2π2
E =

∣

∣

∣

∣

QπE −
Q∆τ

Q

∣

∣

∣

∣

2

,

(11)
or

(

πE −
Q∆τ

Q2

)2

=

(

usat
Q

)2

. (12)

Hence, such a single-epoch space-based observation
yields a circular πE contour of radius usat/Q and center
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Figure 1. Evolution of parallax circles from individual
photometric measurements. The black circles are the lo-
cus of πE consistent with individual measurements after
(1,5,9,13,17,21,25,29,33) days of daily Spitzer observations,
under the assumption of perfect (σ = 0) photometric mea-
surements, for a hypothetical tE = 30 day event that peaks
at u0,⊕ = 0 on t0 =25 May 2019 and for which the first
Spitzer observation is 9 July 2019, i.e., at ∆τ = 1.5. The
parallax is (πE,N , πE,E) = (0.2, 0.1) (blue cross). The pairs
of red, green, and magenta circles show the 1σ error range
for the measurements at days 1, 17, and 33, respectively,
assuming photometric measurement errors σ = 0.01mag.
While the black circles all cross the true parallax value, the
finite 1 σ ranges (which grow with time) lead to a joint so-
lution in the shape of an arc. See Figure 2.

Q∆τ/Q2. The solution to Equation (12) can be written
in parametrized form

πE =
Q∆τ

Q2
+
usat
Q

n̂ (13)

where n̂ represents a unit vector in an arbitrary direc-
tion.

I note that for simplicity of exposition, I have imag-
ined satellite observations that take place well after
Earth-based peak, i.e., ∆t = tsat − t0,⊕ > 0. However,
the formula applies equally well to single observations
that are taken at any time. In particular, this includes
single observations that take place well before Earth-
based peak, i.e., ∆t < 0. There are many practical
cases of this in real observations as well.

3. IMPACT OF REALISTIC CONDITIONS ON

IDEAL CASE

Equation (12) applies quite generally to the idealized
case. However, because almost 800 microlensing events
have been observed with Spitzer, it is important to un-
derstand how this idealization relates to this ensemble
of real observations.
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Figure 2. Evolution of an arc. Successive panels show
the πE error contours after (1,5,9,13,17,21,25,29,33) days
of daily Spitzer observations, with measurement errors σ =
0.01mag, for the same hypothetical event illustrated in Fig-
ure 1, which has true parallax (πE,N , πE,E) = (0.2, 0.1). The
colors (black, red, yellow, green) indicate ∆χ2 < (1, 4, 9, 16).
The contours evolve slowly from a circle to an arc, but cease
after the sixth panel (∆τ = 2.4) because the errors on the
radii (usat/Q) of the successive degenerate circles become
too large for the additional observations to contribute. See
Equation (15) and Figure 1.

One important practical point to keep in mind is
that for Spitzer observations toward the bulge, the vec-
tor Q points roughly due west and its amplitude lies
approximately in the range

Q ≃ 1 + sin[8◦ × (Y − 2013)± 18◦], (14)

where Y is the year of observation. The direction sim-
ply reflects the facts that Spitzer is in an Earth-trailing
orbit and that for Galactic-bulge targets, the ecliptic
is roughly parallel to the equator. Then, because the
2014-2019 campaigns have taken place when the bulge is
approximately in opposition (while t0,⊕ is almost always
within ∼ 1.5 months of opposition), the v⊕∆t term in
Equation (10) approximately “corrects” the Earth po-
sition going into “D” to what it would be at the time
of the Spitzer observation. On the other hand, due to
Sun-angle restrictions, Spitzer observations toward the
ecliptic are always near quadrature. This accounts for
the form of Equation (14). The normalization and range
reflect the fact that in 2013, the bulge was in opposition
at the midpoint of the 38-day Spitzer viewing window.

Continuing to restrict attention to “high-
magnification” (u0,⊕ ≪ 1) events, there are two
main differences between real observations and the
idealized case of Section 2. First, there are in practice
not just two observations, but a series of observations
that either begin well after t0,⊕ or end well before t0,⊕.

Second, the value of usat for each observation is not
known precisely but with some finite error.

Regarding the errors, both quantities that enter
the circle center in Equation (13) (Q and ∆τ) are pre-
cisely known, so the only uncertainty in the description
of the circle is in its radius. This derives from the error
in the value of usat, which propagates via Equation (5)
from Asat = 1+ (fsat − fbase,sat)/fs,sat. Thus, there are
three potential sources of error: the individual mea-
surement error fsat, the estimate of the baseline flux
fbase,sat, which in practice comes from the overall fit
to the satellite light curve, and the satellite source flux
fs,sat, which comes from the color-color relation.

The last of these puts a fundamental limit on the
precision in the sense that this error cannot be im-
proved by additional observations. However, as I now
show, its impact is usually small. The color-color rela-
tion yields an error in magnitudes, e.g., σ = 0.04mag.2

Propagating through Equation (5), we obtain σ(Asat) =
(Asat − 1)kσ, where k = 0.4 ln 10, and so

σ0(usat) =
σ(Asat)

|dA/du|
=

(

A− 1

A

u(u2 + 2)(u2 + 4)

8

)

kσ.

(15)
The coefficient in brackets is relatively small
and stable over the relevant range of u, tak-
ing on values of (0.29, 0.22, 0.27, 0.37, 0.50) for
u = (0.5, 1.0, 1.5, 2.0, 2.5). Therefore, we expect that
the limit on the width of the circle in the πE plane due
to the color-color relation will be small, For example,
for σ = 0.04mag and Q = 1.3, this limit would be
σ0 . 0.01 over the range 0.5 < usat < 2.

The error due to the individual flux measurement
errors (expressed in magnitudes σi) degrades much
more rapidly with increasing u. Ignoring the other two
sources of error (color-color relation and baseline flux)
and considering the case of zero blending, this can be
evaluated

σi(usat) =

(

u(u2 + 2)(u2 + 4)

8

)

kσi. (16)

For the same five values of u = (0.5, 1.0, 1.5, 2.0, 2.5),
the coefficient in brackets takes on values of
2Such errors reflect two steps: measuring the source color in two
bands from the ground and measuring a color-color relation by
cross-matching three-band space and ground photometry. Both
steps may require special efforts. For example, ground-based
surveys routinely take sparse V -band observations to yield V −I
source colors, but Spitzer (at L = 3.6µm) often observes highly
extincted targets for which the V observations are practically
useless. It is then essential to observe in a near-IR band (such
as H) while the event is substantially magnified to obtain a
ground color (e.g., Gould et al. 2019). With well-magnified
data in two bands, the ground color measurement is usually
accurate to a few hundredths of a magnitude. It is also usually
straightforward to obtain a precise color-color relation of bulge
stars (so, suffering similar extinction to the source), but this is
almost always restricted to giant stars, whereas the sources are
often dwarfs. Depending on the source color and the three pho-
tometric bands, giants and dwarfs can obey different color-color
relations, and this must be carefully taken into account (e.g.,
Shvartzvald et al. 2017b). In general, errors of order this ex-
ample value are readily achieved provided that timely ground-
based color data are taken, but careful treatment is required.
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(0.60, 1.9, 5.0, 12, 39). Thus, for observations that be-
gin outside the Einstein ring (usat > 1), the parallax
information content is dominated by the earlier obser-
vations. This has important implications, which I dis-
cuss immediately below. The last source of error (in
fs,base) generally plays the role of exacerbating this ef-
fect: it is subdominant in the early observations, while
the later-time observations mainly contribute to evalu-
ating fs,base itself.

Based on this assessment of the errors, I now show
that the main impact of a finite series of observations
(relative to a single observation) is usually to partially
break the complete-circle degeneracy and turn it into
an arc (e.g., Figure 5 of Jung et al. 2019). The first
point to note is that for most late-starting observations,
Q ≫ πE. That is, typically Q ∼ 1 while πE . 0.2
for most events.3 Moreover the direction of Q changes
very little with time because D and v⊕ are both ap-
proximately aligned with the ecliptic. Therefore, the
center of the circle (∆τ/Q)(Q/Q) is gradually moving
west while its eastern limb must always pass (within
errors) through πE, which is near the origin. Thus,
the arcs comprising the eastern limbs of circles from
multiple epochs will largely coincide, while the west-
ern limbs will increasingly separate, i.e., be inconsistent
with one another. See Figure 1. However, as discussed
in the previous paragraph, the width of these circles is
rapidly increasing, so that most of their constraining
power comes from the earlier measurements. For this
reason, the process tends to leave parallax arcs, which
(other things being equal) are longer for observations
sequences that start at higher usat. See Figure 2.

4. RESOLUTION OF 1-D DEGENERACY

As discussed in Section 3, multiple late-time measure-
ments will always restrict the circle described by Equa-
tions (12) and (13) to an arc. And if these observations
begin early enough, then the arc (or arcs, see below) will
be sufficiently restricted to regard them as 2-D (rather
than 1-D) measurements. In fact, if the measurements
begin sufficiently early, one should just recover the two-
fold degeneracy4 predicted by Refsdal (1966) and il-
lustrated by Figure 1 of Gould (1994). That is, with
improving information, the arc should break up into
two arclets placed symmetrically with respect to the Q

(essentially, D) axis.
However, in this section, I want to focus on how

this 1-D arc (or even circle) degeneracy can be broken
for the cases that the arc is relatively long. There are
two classes of methods: information from annual par-
allax, and independent information about the direction
of the lens-source relative proper motion µgeo. For the
second class, there are three known distinct approaches.

3This limit applies to the great majority of bulge events because
πrel . 0.03mas, while most lenses have masses M & 0.1M⊙.
Many disk lenses have πE . 0.2 as well, e.g., those lying more
than halfway to the Galactic center (πrel < 0.125mas) with
masses M > 0.4M⊙.

4The degeneracy is only two-fold, rather than four-fold, because
we are still working in the regime where u0,⊕ ∼ 0.

4.1. Combining with 1-D Annual Parallax
Measurements

A very large fraction of microlensing events, at least
among those that are bright enough to allow Spitzer
observations, have sufficient information for 1-D par-
allax measurements. These are usually straight in the
Cartesian πE plane. See, for example, Figure 3 of Park
et al. (2004), Figure 4 of Ghosh et al. (2004), Figure 2
of Jiang et al. (2004), and Figure 1 of Poindexter et al.
(2005). The reason that these are all very old papers,
from an era when the rate of microlensing-event discov-
ery was ∼ 5 times lower than today, is that the main
scientific interest was in the effect itself and its poten-
tial applications, rather than in the πE measurement,
which was generally too weak to be useful. However,
there have been some cases for which such 1-D mea-
surements did play a significant role in the immediate
scientific results, e.g., Figure 2 of Dong et al. (2009),
Figure 3 of Batista et al. (2009), and Figure 6 of Mu-
raki et al. (2011).

Such linear 1-D contours will in general intersect
the circle described by Equations (12) and (13) in two
places.5 Hence, in the general case, the two intersection
points will yield different values of πE, with the frac-
tional difference being greater when the 1-D contours
are farther from being tangent to the circle. However,
if the parallax circle has been broken into sufficiently
small arclets, then this two-fold discrete degeneracy
may be automatically broken by inconsistency at one
of the two intersection points.

I note that confusion with xallarap effects due to
orbital motion of the source is a potentially more se-
rious problem in the interpretation of 1-D annual par-
allax compared to 2-D. (Xallarap has no direct effect
on space-based parallaxes, but is relevant here because
I am investigating 1-D annual parallax as a means to
break the space-based parallax degeneracy.) Xallarap
can, in principle, always perfectly mimic annual par-
allax. However, as pointed out by Poindexter et al.
(2005) it is extremely unlikely that, for 2-D parallax,
the three principal xallarap parameters (period, phase,
and inclination) would all precisely mimic those induced
by Earth’s motion. But in the case of a putative 1-
D annual parallax signal, there is no such strong test
against xallarap: any method of producing uniform ac-
celeration for the main duration of the event will have
exactly the same effect on the light curve. It is still the
case that xallarap is a priori much less likely than par-
allax because the Sun is definitely accelerating Earth
in its direction, while only a small fraction of source
stars have companions in the mass and separation range
where they could induce acceleration that is both uni-
form (i.e., with sufficiently large semi-major axis) and
of sufficient strength (i.e., with sufficiently small semi-
major axis and sufficiently large mass) to produce the

5As a special case, the 1-D parallax measurement could be tan-
gent to the circle (or arc). It could only miss the circle if there
were systematic errors in either the Earth-based or space-based
data that compromised the result.
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observed effect. Nevertheless, this possibility should be
evaluated concretely in each individual case.

4.2. Combining with Independent Proper-Motion
Information

The direction of πE is by definition the same as the
direction of µgeo, i.e., the lens-source relative proper
motion in the geocentric frame. Therefore, if this di-
rection is known, then even the full circular degeneracy
from Equation (13) can be unambiguously resolved.

There are three known methods to independently
measure the lens-source relative proper motion. One of
these directly measures µgeo, a second directly mea-
sures the heliocentric proper motion µhel = µgeo +
v⊕(πrel/AU), while a third directly measures something
that is intermediate. The relationship between µgeo and
µhel has been analyzed in detail by Ghosh et al. (2004)
and by Gould (2014), and there are no further issues
to be explored here. I mention this issue only for com-
pleteness.

Note that because θE = µgeotE and tE is measured
during the event, each of these methods also yields θE,
which is the other parameter (in addition to πE) that
is required to measure M and πrel.

4.2.1. Proper Motion From Astrometric Microlensing

The light centroid of the two magnified images is dis-
placed from the true position of the source by,

δθ = −
∆θ

(∆θ/θE)2 + 2
, (17)

where ∆θ is the displacement of the lens relative to
the source (Miyamoto & Yoshii 1995; Hog et al. 1995;
Walker 1995). Thus, by a series of astrometric measure-
ments (and initially excluding those near the microlens-
ing event) one can solve for the source parallax πs and
proper motion µs. Then one can apply Equation (17)
to the deviations ∆θ from this solution to determine θE
and the lens-source relative proper motion. In practice,
one would fit all the astrometric data to all of these
parameters simultaneously.

Note that if the event is relatively short, then the
astrometric deviations occur while Earth’s motion is
similar to that at t0,⊕, so it is the geocentric proper
motion that is most directly measured. If the event is
long, then the measurements are most sensitive to the
heliocentric proper motion. In practice, there is no am-
biguity. One just, for example, fits for the heliocentric
proper motion and that quantity will be returned by
the fitting program. The distinction is just that if the
event is short, the error bars on a fit to µgeo will be
smaller than on µhel.

4.2.2. Proper Motion By Resolving the Einstein Ring

With sufficiently high resolution, the two images of the
source can be resolved. In this case, the separation
between the two images and their flux ratio directly
yields θE, while their orientation (position angle ψ) on

the sky gives the direction of the instantaneous lens-
source separation ∆θ. The first such image resolu-
tion was recently achieved by Dong et al. (2019) using
VLTI/GRAVITY.

While the direction of lens-source separation ∆θ
does not directly give the direction of lens-source rela-
tive proper motion µgeo, the angle between these two
vectors is precisely known from the photometric light
curve, or from the flux ratio of the two images. Un-
fortunately the sign of this angle (same as the sign of
u0,⊕) is not known, and this degeneracy remains even
for the case that we are still considering, |u0,⊕| ≪ 1. In
principle, this discrete degeneracy can be resolved by
a second epoch of high-resolution imaging, e.g., 1 day
later.6 However, Dong et al. (2019) were unable to ob-
tain a second epoch due to weather. In such cases, this
degeneracy may be resolved by either of the two meth-
ods mentioned above, i.e., by astrometric microlensing
or by 1-D annual parallax. In those cases, either method
would itself give a measurement of the proper-motion
direction, but direct imaging of the Einstein ring gives
vastly more precise results. Hence, the main role of
these auxiliary techniques would simply be to break
the degeneracy (Dong et al. 2019). Finally, this de-
generacy could in principle be resolved by the Spitzer
observations if these restricted the circle to an arc that
intersects one but not both solutions.

4.2.3. Proper Motion From Late-Time Imaging

Finally, after the lens and source separate sufficiently to
be separately resolved (Alcock et al. 2001) or at least
to distort their common unresolved image (Bennett et
al. 2006), then their relative proper motion can be de-
termined simply by dividing their measured vector sep-
arations by the elapsed time since t0,⊕.

In contrast to the previous three methods, which
do not depend in any way on the lens being luminous,
this method appears at first sight to require a luminous
lens. And it therefore appears to be less valuable, be-
cause if the lens can be imaged (which automatically
yields µ and so an estimate of θE = µgeotE), then good
estimates of M and πrel can already be made from its
photometric properties combined with the constraint
θ2E = κMπrel. However, as discussed by Gould (2014),
this “lower value” is somewhat deceptive. For several
tens of percent of cases, the star that is imaged will ac-
tually be a binary companion to a dimmer (or possibly
dark) lens. The proper motion of this companion will be
nearly identical to that of the lens, but its photometric
properties will be completely unrelated to those of the
lens. Such cases can only be detected and analyzed if
there is an independent measurement of the microlens
parallax. Because the proper motion is measured by
this imaging, all that is required to extract a full 2-D

6More precisely, the position angle ψ changes by ∆ψ →

(δt/teff )/[1 + (t − t0)2/t2eff ], where teff ≡ u0tE is the effective
timescale and δt is the elapsed time between the two obser-
vations. This must be significantly larger than the measure-
ment error of ψ. For the event observed by Dong et al. (2019),
σ(ψ) = 0.005, but other cases may be less favorable.
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Figure 3. Similar to Figure 2 except that the event as seen
from Earth has u0,⊕ = +0.4 (rather than 0). Note that the
symmetry axis is inclined to the Q axis (basically east-west)
by ≃ tan−1(u0/∆τ ), i.e., the same as the angle between
PE and πE (see Eq. (18)). This is contrary to the case
that the satellite observations cover the peak (Refsdal 1966;
Gould 1994). Because the offset between the two degenerate
solutions is larger (|πE,++ − πE,+−| ∼ 1.6 versus ∼ 0.4
for u0,⊕ = 0 from Fig. 2), the large arc tends to break up
into two arclets, although only marginally for the adopted
measurement errors σ = 0.01mag shown here.

determination of πE is a 1-D parallax. This could come
from 1-D annual parallax (Ghosh et al. 2004; Gould
2014), or from a circle (or arc) as investigated in the
current work.

5. GENERAL CASE OF A SINGLE LATE-TIME

OBSERVATION

I began by investigating the special case of high-
magnification (u0,⊕) because it captures the essential
physics and is mathematically simple. But it is impor-
tant to also explore the more general case. To facilitate
this investigation, I introduce πT

E , which I define as hav-
ing the same magnitude as πE (|πT

E | = πE), but whose
direction is orthogonal (πT

E · πE = 0). And I introduce
another vector

PE ≡
(∆τ)πE + u0π

T
E

√

(∆τ)2 + u20
, (18)

which also has the same magnitude (|PE| = πE) but is
rotated relative to πE by tan−1(u0/∆τ). Note that I
have suppressed the “⊕” subscript on u0. Then, Equa-
tion (9) becomes

u2sat =

∣

∣

∣

∣

πE∆τ

πE
−QπE +

πT
E

πE
u0

∣

∣

∣

∣

2

(19)

or

u2sat = (∆τ)2+u20−2Q ·PE

√

(∆τ)2 + u20+Q
2P 2

E. (20)

Similarly to Equation (11), this can be rewritten as

u2sat =

∣

∣

∣

∣

QPE −
Q

Q

√

(∆τ)2 + u20

∣

∣

∣

∣

2

(21)

or
∣

∣

∣

∣

PE −
Q

Q2

√

(∆τ)2 + u20

∣

∣

∣

∣

2

=

(

usat
Q

)2

. (22)

That is, formally, PE traces a circle with center
√

(∆τ)2 + u20Q/Q
2 and radius usat/Q,

PE =
√

(∆τ)2 + u20
Q

Q2
+
usat
Q

n̂. (23)

I now express this vector equation in a specific coor-
dinate system, in which the x-axis is aligned with Q

and the y-axis is orthogonal to it. The center of the
PE circle is then at (

√

(∆τ)2 + u20, 0). Because PE and
πE are related by a simple rotation of ± tan−1(u0/∆τ)
(depending on the sign of u0) the contour for πE will
still be a circle of the same radius, but with its center
rotated by this angle. That is, in this same coordinate
system,

πE,±(φ) =
(∆τ,±|u0|) + (cosφ, sinφ)usat

Q
, (24)

where φ parameterizes the position around the circle,
and the “±” subscript shows the solutions for the two
different signs7 of u0 (i.e., u0,⊕). That is, there are
two circles of the same size, whose centers are offset by
±u0/Q in the direction orthogonal to Q.

Figure 3 shows the results of the same observation
sequence as Figure 2 but assuming that the otherwise
identical event has u0,⊕ = +0.4. Note that the axis of
symmetry is inclined to the Q axis (essentially the east-
west axis) by about tan−1(usat/∆τ). This is contrary
to the usual case, which was analyzed by Refsdal (1966)
and Gould (1994), for which the symmetry axis is along
the Earth-satellite separation vector. Also note that
in this case, the single arc is beginning to break up
into arclets, one centered on each of the two degenerate
solutions.

6. DISCUSSION

While I began my investigation of circular microlens-
parallax degeneracies with the specific aim of under-
standing the πE “arcs” that appear in microlensing
events with late-time Spitzer observations, these cir-
cular degeneracies are actually a powerful tool for un-
derstanding space-based microlensing parallaxes more
generally. In fact, as mentioned in Section 2, Equa-
tions (12), (13), (23), and (24) actually apply to any
individual space-based observation (provided that Fs,sat

and Fs,base are known).

7To be consistent with the generally used sign convention that
is described in Figure 4 of Gould (2004), the center of the par-
allax circle in Equation (24) should be expressed as [(QN∆τ +
QEu0), (QE∆τ −QNu0)]/Q

2.
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Figure 4. Five single-measurement circular degeneracy con-
tours in the πE plane shown for an event with u0,⊕ = +0.4,
tE = 18 days and t0,⊕ =18 July 2019. The five simu-
lated Spitzer measurements are (left to right) at ∆τ =
(t − t0,⊕)/tE = (−0.5, 0,+0.5,+1.0,+1.5). The spacing of
the concentric circles shows ±1σ errors propagated from
measurement errors of ±0.01mag. Any combination of two
of the first three observations would give a very precise
measurement of πE (up to a two-fold degeneracy). How-
ever, because one does not know a priori how the space and
ground events are offset, roughly four measurements would
be necessary to reasonably guarantee good precision (plus
an additional measurement at baseline). See Calchi Novati
& Scarpetta (2016) for a view of the parallax geometry in
the heliocentric-observer (as opposed to πE) plane.

6.1. Parallax Circles: A General Tool

That is, any ensemble of satellite microlensing parallax
observations can be understood as an overlapping set
of circles on the πE plane. In Section 3, I gave one
application of this approach to understand how these
overlapping circles combine to form arcs for events with
only late-time satellite observations.

6.2. Understanding the Four-Fold Degeneracy

A second application is to provide an alternate under-
standing of the four-fold degeneracy. Let us first con-
sider the case of u0,⊕ = 0, for which there is a two-
fold degeneracy. The circles are always centered on
the Q axis. They all must pass through the actual
value of πE. In doing so, they must also pass through
π′

E = 2[(Q/Q) ·πE](Q/Q)−πE, which is as much “be-
low” the Q axis as πE is above it. Because this ex-
pression depends only on the direction of Q and not
its magnitude, all circles that pass through πE will also
pass through π′

E provided that this direction does not
change. Hence, breaking this degeneracy (from satellite
data alone) depends on Q changing direction enough to
have a significant effect.

For the case of u0 6= 0, the picture of intersecting
circles while the source is within the Einstein ring di-
rectly reproduces the traditional understanding of the
two-fold degeneracy between the source passing on the
same versus opposite sides of the lens as seen from the
two observatories. See Figure 4. However, as shown by
Figure 3, the symmetry axis rotates at late times, thus
providing some possibility that the late-time “arc” will
be inconsistent with one of the two solutions.

6.3. Cheap Satellite Parallaxes at All Magnifications

The geometry shown in Figure 4 immediately gives rise
to a third and fourth application. The third appli-
cation is a generalization of the Gould & Yee (2012)
proposal for “cheap space-based microlens parallaxes”.
Recall that their proposal rested on obtaining a space-
based image very near t0,⊕ and was restricted to high-
magnification events u0,⊕ ≪ 0. However, using the cir-
cle picture, it is easy to see that two satellite observa-
tions (plus baseline) are all that are needed in principle
to measure πE. That is, two circles, regardless of rela-
tive size, can only intersect in zero, one, or two places.
Parallax circles must intersect at least once (within er-
rors) at πE.

If the circles intersect in two places (i.e., cross
rather than being tangent), then the ∆χ2 = 2 error con-
tour (containing (1− e−1) = 63% of the probability) is
given directly by the ellipse that passes through the four
intersection points of the two sets of 1 σ error-circles.
Consider, for example, the two smallest-error circles in
Figure 4. One sees from the inset that these intersection
points are separated by ∆πE,N = 0.014 along the ordi-
nate and by ∆πE,E = 0.044 along the abscissa. Hence
σ(πE,N , πE,E) = (∆πE,N ,∆πE,E)/

√
8 = (0.005, 0.016).

While it is always possible “in principle” to de-
termine N parameters (in this case, N = 2) from N
measurements, there are two main practical issues that
usually lead one to seek some redundancy, i.e., more
data points. First, some measurements may turn out to
be mathematically degenerate (or nearly degenerate).
Second, usually one would like to have internal checks
on the externally calibrated error bars. I address these
issues in turn.

If the two circles are tangent (or nearly so), and
therefore have effectively only one point of intersection,
then (after taking account of measurement errors), their
overlap will be an arc. I have already shown in Sec-
tion 3 that such arcs are the natural consequence of
a late-time series of satellite observations. The main
way to avoid osculating circles (and so arc or even cir-
cle degeneracies) is to make the observations while the
source is inside the Einstein ring as seen from the satel-
lite. This is easier said than done because one does not
know a priori when this will occur. Indeed, for very
large πE & 1, there is no guarantee that the source
will even pass within the Einstein ring as seen from the
satellite. Thus there is some chance that one or both of
two well-chosen observations, e.g., at t0,⊕±0.5 tE would
fall outside the Einstein ring. Hence, a more aggressive
approach would be to make the first two observation
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Figure 5. Illustration of degeneracy breaking using two satel-
lites. The two pairs of thin-lined concentric circles are ex-
actly the same as the parallax circles in Figure 4 that are
closest to peak, namely at ∆τ = (t − t0,⊕)/tE = −0.5 and
+0.5 and for exactly the same simulated event. They inter-
sect at the true parallax (πE,N , πE,E) = (0.2, 0.1), but also
at a second degenerate solution, (πE,N , πE,E) ≃ (−0.7, 0.1).
Indeed parallax circles at all epochs intersect at approx-
imately the same locations. See Figure 4. The thick-
lined concentric circles correspond to measurements made
by a hypothetical second satellite in a Spitzer like orbit but
launched exactly six years later and so not as far from Earth.
These circles also intersect in two degenerate locations, i.e.,
(πE,N , πE,E) = (0.2, 0.1) and (−0.9, 0.1). Combining the
measurements of the two satellites resolves the degeneracy
in favor of the first solution.

early, e.g., at t0,⊕ − 0.5 tE and t0,⊕ − 0.3 tE, to deter-
mine whether the event was rising or falling and make
a rough πE measurement. And then to use these to de-
cide on one or two additional measurements (in addition
to baseline). Still, only of order 4 + 1 = 5 observations
would be needed. While more than the absolute mini-
mum of 2 + 1 = 3, it is still far less than in the current
mode. See Figure 4.

Note that this approach could not be applied to
Spitzer microlensing for three reasons. First, the ob-
servations are initiated with a 3-10 day delay. See Fig-
ure 1 of Udalski et al. (2015). This means that the
great majority of events have their first observation af-
ter t0,⊕ − 0.5 tE, which very often proves to be near or
after t0,sat + 0.5 tE. Second, there is no way to alter
the observing schedule on a daily basis as envisaged in
the previous paragraph. Third, the data are not down-
loaded fast enough to make such real time decisions.
However, if a satellite were specifically engineered for
microlens parallaxes, then it could incorporate these ca-
pabilities. This would make it possible to monitor 1500
microlensing events per year with only 30 observations
per day, which implies that a very small telescope (e.g.,

20 cm) would be adequate.
A second reason for obtaining 4 + 1 (rather than

2 + 1) observations is to control systematics, i.e., devi-
ations of the measured versus true values that are not
captured by the statistical error bars. These can take
a variety of forms, but the two of greatest concern are
large random fluctuation (due to stochastic processes on
either the sky, e.g., cosmic ray events, or the detector)
and long-term trends. Of course, any satellite under-
goes extensive commissioning observations at the start
of the mission that are matched to its envisaged scien-
tific goals, which would characterize such systematics
in the present case. Still, it would be useful to have
ongoing checks against large stochastic outliers, which
would be a routine by-product of (4 + 1) observations.
(It is likely that the ∼ 1 hr exposures mentioned above
would be subdivided into several sub-exposures, which
would provide additional redundancy.)

The problem of long term trends (so-called “red-
noise”) is substantially less severe when parameters are
derived from a few measurements (the present case) as
opposed to many measurements (e.g., transiting plan-
ets). To understand this concretely, consider the Spitzer
light curve of OGLE-2016-BLG-1045, in Figure 1 of
Shin et al. (2018). This shows long term residual trends
with semi-amplitude ∼ 0.015mag, which is approxi-
mately equal to the statistical errors. Suppose that
one searched for a planetary transit in a region of a
light curve containing N = 400 points with these sta-
tistical and systematic error properties, and derived
a transit with the same depth, i.e., 0.015 mag. If
one treated the errors as being purely statistical at
σ = 0.015mag, then the error in the transit depth
would be σ/

√
400 = 0.00075mag, so a clear ∆χ2 = 400

planet “detection”. Even if one added the systematic
“noise” 0.015/

√
2 in quadrature to the statistical noise,

one would still end up with a spurious ∆χ2 = 267 “de-
tection” (if one continued to treat the 400 individual
measurements as independent).

But note that no such issue of “red” (i.e., cor-
related) noise arises in the single-epoch measurement
tested by Shin et al. (2018) for OGLE-2016-BLG-1045.
The one measurement that they use has an empirically
renormalized error bar that automatically takes account
of deviations due to both long term trends and statis-
tical fluctuations. It does not take account of corre-
lations, but since there is only a single measurement,
correlations do not play any role.

The situation is only slightly worse for the two-
measurement determinations envisaged here. That is,
if the error bars were set to account for both random
fluctuations and systematic trends (as in case of OGLE-
2016-BLG-1045), then the pairs of error circles in Fig-
ure 4 would each individually be correct. It would
not be correct to treat two measurements as statisti-
cally independent, but if one did so nevertheless (and
if, e.g., the amplitude of systematic trends were equal
to the statistical fluctuations as in OGLE-2016-BLG-
1045), then one would only underestimate the true er-
ror of the πE determination by factor

√

6/5 ∼ 1.1. Of
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course, one should not proceed in this naive way, but
rather take proper account of the actual error proper-
ties of the data. Nevertheless this exercise shows that
“red noise” is a relatively minor issue for parameter
measurements based on a few measurements unless the
red noise itself is very severe. For the case of Spitzer,
Zhu et al. (2017a) found severe red noise in only a small
fraction of the order 50 events with data adequate to
make this determination. The origin of these system-
atics is not precisely known, but is unlikely to affect
an optical satellite with subsampled pixels of near uni-
form response, which (in contrast to Spitzer) would per-
mit standard difference imaging analysis (DIA, Alard &
Lupton 1998).

6.4. Cheap Breaking of the Four-Fold Degeneracy

The simplified approach outlined above would still leave
the four-fold degeneracy in tact. In many cases this
could be broken by one of the four methods outlined in
Section 4. However, this simplified approach also makes
it feasible to carry out the monitoring with two such
satellites, as originally envisaged by Refsdal (1966). If
both satellites were near the ecliptic (by far the cheap-
est approach), then only one pair of degeneracies would
generally be broken. This was the outcome when Zhu
et al. (2017b) applied this two-satellite technique, using
Spitzer and Kepler, both of which are near the eclip-
tic. However, the degeneracy that was broken (be-
tween ∆β′

±,∓ and ∆β′
±,±, i.e, opposite versus same

signs) is by far the more important one because it would
lead to different magnitudes of πE and so different lens
massesM = θE/κπE and lens-source relative parallaxes
πrel = θEπE. Thus, a second, small, low-cost satellite
would be by far the simplest and most robust method
to systematically remove this degeneracy. See Figure 5.
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