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Abstract 
 

E-cash has its merits comparing with other payment modes. However, there are two problems, 
which are how to achieve practical/complete tracing and how to achieve it in compact E-cash. 
First, the bank and the TTP (i.e., trusted third party) have different duties and powers in the reality. 
Therefore, double-spending tracing is bank’s task, while unconditional tracing is TTP’s task. 
In addition, it is desirable to provide lost-coin tracing before they are spent by anyone else. 
Second, compact E-cash is an efficient scheme, but tracing the coins from double-spender 
without TTP results in poor efficiency. To solve the problems, we present a compact E-cash 
scheme. For this purpose, we design an embedded structure of knowledge proof based on a 
new pseudorandom function and improve the computation complexity from O(k) to O(1). 
Double-spending tracing needs leaking dishonest users’ secret knowledge, but preserving the 
anonymity of honest users needs zero-knowledge property, and our special knowledge proof 
achieves it with complete proofs. Moreover, the design is also useful for other applications, 
where both keeping zero-knowledge and leaking information are necessary. 
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1. Introduction 

Nowadays, e-Commerce system [1, 2] is common, and e-payment is the core module. Some 
e-payments guarantee the anonymity of users, but sometimes it is abused for crimes. Over the 
past years, quite some research effort has been put in design of E-cash [3] based on blind 
signature [4, 5] or knowledge signature [6, 7]. To prevent user from abusing anonymity, the 
tracing function is necessary. Fig. 1 shows a typical E-cash model. 

 
Fig. 1. Typical E-cash model 

 
In general, an E-cash system has the following properties: 
• Anonymity: No one can identify the spender or link the spending behaviors. 
• Unreusability: The owner of e-cash will be identified if he spends one coin twice. 
• Unforgeability: No one except the bank can generate valid e-cash. 
• Offline mode: There is no the third party participating in the payment process. 
• Environmental independence: System security depends on the cryptographic scheme. 
Some interesting E-cash schemes such as divisible E-cash, transferable E-cash and 

changeable denomination E-cash, etc., are put forward. And compact E-cash [8] is the 
important scheme. In such system, user withdraws 2l e-coins by performing the withdrawal 
protocol one time and stores the coins in O(l) bits. 

2. Related Work 
Our goal is to construct a compact E-cash system with practical and complete tracing, so we 
present two parts of the related work. 

Part I: the Practical tracing and the Complete tracing 
“Practical” means that different tracings should be provided by the appropriate entity, and 

“Complete” means that the tracings should meet the demand from real-world applications. 
To prevent customer from reusing a coin, double-spending tracing is the basic function. 

Since it is related to the bank’s business, double-spending tracing should be performed by bank. 
Sometimes, the anonymity of users may provide the convenience for crimes, such as 

money laundering and blackmailing. Therefore, S. von Solms and D. Naccache [9] suggested 
that the anonymity of users should be revoked when necessary, and then [10] and [11] put 
forward a new E-cash scheme, i.e., fair E-cash. In such a system, the user remains anonymous 
if he honestly spends the legal e-coins, but if crimes occur so that the related transaction is 
illegal, the e-coins and the owner can be traced unconditionally. Here “unconditionally” 
means that the coins and the owner can be traced when the user does not double-spend coins. 

  E-cash system 

Withdraw E-cash    Deposit E-cash 

 Spend E-cash  

unlinkable 

unlinkable 

 Bank 

       Customer           Shop  
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In reality, the authorities are usually the trusted third parties, who have the power to perform 
unconditional tracing only when the E-cash is involved in crimes. 

Therefore, it is not practical that the TTP is indispensable to double-spending tracing [1, 10, 
12, 13, 14, 15, 16, 17, 18]. But the tracing function is not complete if the system does not 
provide unconditional tracing [2, 8, 19, 20, 21, 22, 23, 24, 25, 26, 27]. 

In our opinion, for crime prevention, the unconditional tracing is necessary, however, the 
existence of TTP unavoidably threatens the anonymity of honest users. So it is reasonable that 
the system can be independent of TTP, but at the same time, the scheme can easily be slightly 
modified to select the available tracings depending on the actual circumstances. 

In addition, if the user loses E-cash, he should find some way to get his money back if the 
lost E-cash cannot be spent by anyone. And it could be achieved if bank provides lost-coin 
tracing (in the validity period of coins), which is ignored by almost all schemes. 

There are 2l coins in the customer’s wallet in compact E-cash system. So in such system, 
double-spending tracing and unconditional tracing should include coin-tracing. Table 1 shows 
the property of the practical and complete tracing. 

 
Table 1. The property of the practical and complete tracing 

Tacing types Double-spending tracing Unconditional tracing Loss tracing 
    tracing spender tracing coins        tracing owner tracing coins tracing coins 

Provider Bank TTP Bank 
Condition Double-spending None (only in crime cases) Valid loss-register for unspent coins 
Module Necessary Optional Optional 

 
In fact, the “practical” and “complete” tracing is not easy for existing schemes. Moreover, 

the recoverable E-cash scheme is presented in [20, 28, 29] for sloving the coin-lost problem, 
but there were some unsolved problems. In our [30], we clarify all there problems and provide 
a solution. But to achieve the practical and complete tracing in compact E-cash, there is a new 
problem. 

Part II: the Efficiency problem in compact E-cash 
The significant contribution of compact E-cash [8] is that the computation complexity of 

withdrawing 2l coins is O(1), and the storage space of the 2l e-coins is just O(l) bits, while 
before it is proposed, the E-cash schemes have to withdraw 2l coins or store them with O(2l) 
complexity. Then some other interesting compact E-cash schemes [21, 23, 31] are designed 
based on different cryptographic techniques. But good efficiency, which is the very important 
for compact E-cash, does not attract enough attention in the designing. After all, achieving 
efficient system is the main goal of compact E-cash. 

The main efficiency problem is that tracing coins without TTP results in poor efficiency [8, 
21, 23, 31]. When the user double-spends E-cash, tracing him is necessary. However, tracing 
his coins is very important, since the doulbe-spender has at least 2l coins so that he can cheat 
more times if system cannot trace his remaining coins. As we discussed, double-spending 
tracing is the bank’s task, not the TTP’s. Obviously, if TTP performs every tracing, it seriously 
threatens the anonymity of honest users. However, when double-spending, it is not easy for 
existing schemes that bank traces double-spender’s coins without TTP. 

[21, 23] and the system 1 of [8] only provide the double-spender tracing. The system 2 of 
[8] and [31] provide coin-tracing. However, when adding this coin-tracing without TTP, their 
systems [8, 31] become inefficient. For example, when the system 2 of [8] adds coin-tracing, 
the inefficiency is pronounced —— in the system 1, the withdrawal uses 12 multi-based 
exponentiations, while in the system 2, it uses 810 multi-based exponentiations and 300 
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bilinear pairings. At the same time, in the system1, spending one coin uses 40 multi-based 
exponentiations, while in the system 2, it uses 778 multi-based exponentiations. 

In existing compact E-cash schemes [8, 21, 23, 31], there are some difficulties in designing 
coin-tracing without TTP for doulbe-spending. And we will clarify it. All compact E-cash 
schemes are constructed based on zero-knowledge proof. In short, when spending a coin from 
the compact E-cash wallet, the customer shows the shop a pseudorandom function with the 
wallet parameters and proves the pseudorandom function is constructed correctly using 
zero-knowledge proof. So when the customer doulbe-spends a coin, the bank needs the wallet 
parameters as the input of the pseudorandom function so as to trace the remaining coins from 
the double-spender. But without a TTP, for recovering the secret wallet parameters, [8] uses 
the verifiable encryption and [31] uses the accumulator. Unfortunately, these cryptographic 
techniques result in poor efficiency. 

Tacing without TTP implies that the information of secret parameters is leaked when 
double-spending. But for the anonymity of honest customers, the knowledge of secret 
parameters is proven using zero-knowledge proof. Therefore, to solve the problem of 
recovering secret parameter, our idea is reconstructing the zero-knowledge proof [32]. And the 
new zero-knowledge proof can leak the information of the proven parameters when it is used 
twice to prove the same knowledge (double-spending), but it has the perfect zero-knowledge 
property when it is used once (normal-spending). That is to say, it guarantees the anonymity in 
normal case and revokes the anonymity in abnormal case. 

To the best of our knowledge, when the customer double-spends a coin, the efficiency 
problem caused by tacing coins without TTP had not been solved in existing compact E-cash 
schemes. And we solve it —— achieving coin-tracing without TTP, our computation 
complexity of withdrawing E-cash is O(1), while it is O(k) in [8] and it is O(22n) in [31]. 

Our main contributions: 
 We present a compact E-cash scheme with practical and complete tracing. 
 We provide a solution to the efficiency problem in compact E-cash system when 

tracing double-spender’s coins without TTP. 
 The new knowledge proof is zero-knowledge to verifier in normal-spending, while it 

leaks the proven knowledge in double-spending. 
In the following parts, Section 3 provides preliminaries. Section 4 presents the system 

model. In section 5, we describe the tracing mode. Section 6 provides the details of the 
proposed scheme. The key security proofs are presented in section 7. And in section 8, we 
compare the system efficiency of schemes. Finally, the conclusion is provided in section 9. 

3. Preliminaries 

3.1 Assumptions 
Assumption 1 (S-RSA Assumption) [33]. Let n=pq be an RSA-like modulus and z∈Z*

n. It is 
hard to compute u∈Z*

n and integer e>1 such that z ≡ ue (mod n). 
Assumption 2 (DDH Assumption) [34]. Let G=〈g〉 be a cyclic group generated by g of order 
u=#G with log2(u)=lG. Given (g, gx, gy, gz) ∈G4, it is hard to decide whether gz and gxy are 
equal. 
Assumption 3 (q-DDHI Assumption) [8]. Let G=〈g〉 be a cyclic group generated by g. Given 
the elements (g, gx,…, g(xq)) ∈ (G*)q+1, it is still hard to decide whether g1/x and a random 
element in G are equal. 

The (t, q, ε)-DDHI assumption means that there is no t-time algorithm which has the 
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advantage at least ε to break the q-DDHI assumption. 

3.2 Zero-knowledge Proof [35, 36] 
Definition 1. Let A={A(x)}x∈L and B={B(x)}x∈L be two ensembles of variables indexed by 
strings x∈L, where L∈{0,1}*. A and B are statistically indistinguishable, if for any polynomial 
p(.) and any x∈L it holds that∑t∈{0,1}*|Prob(A(x)=t)-Prob(B(x)=t)|<1/p(|x|). 
Definition 2. Protocol (P,V) is statistical zero-knowledge, if {[P, V](x)}x∈L and {S[P,V](x)}x∈L 
are statistically indistinguishable, where V can be any probabilistic polynomial-time verifier 
and S[P,V] is a probabilistic polynomial-time simulator which can simulate the protocol (P,V). 
Definition 3. (c,s) ∈{0,1}k × ±{0,1}ε(l

G
+k)+1 satisfying c=H(y║g║gsyc║m) is a signature of 

knowledge (SPK) on the message m, which uses the knowledge of discrete logarithm of y to the 
base g. And SPK(α: y=gα) (m) denotes it. 

Using the knowledge of discrete logarithm, i.e., x=loggy, SPK(α: y=gα) (m) is computed as 
follows. After choosing r∈±{0,1}ε(l

G
+k), the signer computes c=H(y║g║gr║m) (i.e., 

challenge) and s=r-cx (i.e., challenge-response), and gr is the commitment to prove that the 
signer knows x=loggy. Here H( ): {0,1}* → {0,1}k denotes a hash function. The interactive 
protocol of SPK performed by prover and verifier is the zero-knowledge proof of the 
knowledge of x=loggy provided by prover, which is denoted by PK( ) [8]. 

3.3 Pseudorandom Function [37] 
Generating Key: Choose the secret key SK∈R Zp

*, and the public key PK = gSK. 
Verifiable Random Function: FSK(x) = e(g, g)1/(x+SK) is a verifiable random function and  
    pSK(x) = g1/(x+SK) is the proof of correctness of it. 
Verification: Verify e(gx·PK, pSK(x)) = e(g, g) and FSK(x) = e(g, pSK(x)). If it is true, FSK(x) is 
            proven to be generated correctly. 

So FSK(x) = h1/(x+SK) is viewed as a pseudorandom function (PRF) [37]. FSK(x) is an (s'(k), 
ε'(k)) secure PRF if no one can break the pseudo randomness property with ε'(k) advantage in 
s'(k) time. 

4. Security Model of the E-cash System 

4.1 Syntax 
There are four kinds of entities: C (customer), B (bank), S (shop) and T (TTP or trusted 
authorities). There are the polynomial time algorithms or protocols: B/T/C Setup, Withdraw, 
Pay, Deposit, UnconditionallyTrace, LossCoinTrace, DoubleSpendTrace. P(E1(x1), E2(x2)) 
denotes a protocol between E1 and E2, and E1’s input is x1 and E2’s is x2.  
 B/T/C Setup(params). The algorithm outputs B/T/C’s private/public key pair 

(PKB,SKB)/(PKT,SKT)/(PKC,SKC), here C includes S. 
 Withdraw(C(SKC, PKB), B(PKC, SKB)).  It allows C to withdraw a certain amount of 

E-cash. C receives X (E-cash), i.e. an identifier I and a proof of validity Π, or one error 
message ⊥. B receives the view of the protocol (we call this VPKC) or one error message 
⊥ if VPKC is not proven from C with PKC. 

 Spend(C(X, PKB, SKC), S(PKS)).  It allows C to pay e-coin from X to S. S receives the 
proof π of payment with aux (auxiliary information) or one error message ⊥ if π is 
invalid. C receives the updated wallet X' if the payment is accepted by S. 
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 Deposit(S(PKS, π, aux), B(PKB)).  It allows S to send (PKS, π, aux) to B for deposit. After 
verifying (PKS, π, aux), B adds (π, aux) to spent records. But B outputs one error message 
⊥ if (PKS, π, aux) is invalid or B executes the DoubleSpendTrace algorithm if the coin is 
double-spent. 

 UnconditionallyTrace(B(VPKC, π, aux), T(SKT)).  It is an algorithm which allows T to 
trace any e-coin from X and any owner when the transaction is involved in crimes. T 
outputs particular e-coin tracing information Ie-coin, owner tracing information Iowner and 
proof P1 which proves the connection between the e-coin from X and C, but if the input is 
illegal, T outputs an error message ⊥. 

 LossCoinTrace(C(SKC), B(PKC, VPKC)).  It allows C to register his lost coin/wallet in 
system. B outputs loss tracing information Iloss and a proof P2 which proves the validity of 
the loss register without T, but if the proof of owning the lost-coin/wallet can’t be 
provided, B outputs an error message ⊥; If the lost coin was spent, B outputs the spent 
proof Pspent. 

 DoubleSpendTrace(π1, π2).  With double-spending proofs related to one coin, B executes 
the algorithm and outputs PKC of the double-spender, the tracing information IX of the 
coins from X and the proof P3 which proves that C with PKC is the double-spender and the 
traced coins with IX is owned by the double-spender, but if π1=π2, the algorithm outputs an 
error message ⊥. 

4.2 Security Definitions 
— Balance.  In the Withdraw protocol, Withdrawm is the middle of the protocol. m1 is the first 
message sent by C and b1 is B’s state information when m1 is received. The balance property 
indicates that: 
• There are the efficiently decidable language lS and the extractor Ɛ X-Y (A)     (params, auxext, 

PKC, m1, b1) [8] such that for all b1 and m1, which extracts w = (Θ1, …, Θn, secw) such that 
(m1, b1, w) ∈ lS whenever the probability that B accepts in the Withdrawm part of the 
protocol is non-negligible, where Θ is the serial number of E-cash (e-coin). In the case, 
the extractor outputs (m1, b1, w)∈ lS. 

• With (params, PKB), the adversary A plays the game as follows: A performs 
Withdraw/Deposit protocols with B polynomial times. (A simulates running Spend 
protocol with itself.) (m1,i, b1,i, wi)∈ lS is the output of Ɛ X-Y (A)    (params, auxext, PKCi, m1,i, 
b1,i) if the ith Withdraw protocol is successful, where wi = (Θi,1, …, Θi,n, secwi) are 2l serial 
numbers belonging to PKCi. Af = {Θi,j | 1≤ i ≤ f, 1≤ j≤ n} is the set of all serial numbers 
after performing Withdraw protocol f times. A wins this game if for some f, B accepts a 
coin with one Θ ∉ Af in Deposit protocol. The secure E-cash scheme requires that no 
probabilistic polynomial-time (PPT) A can win the game with non-negligible probability. 

— Complete-Tracing.  It guarantees that no PPT A has a non-negligible probability of 
winning the following game: 
On input (params, PKB), A performs Withdraw/Deposit protocols with B polynomial times. (A 
also simulates running Spend protocol with itself.) Ai be the set of serial numbers which 
belong to Ci with PKCi. A wins the game if any of the following cases occurs. 
• On input (B(VPKCi, π, aux), T(SKT)), the algorithm UnconditionallyTrace can not output 

e-coin tracing information Ie-coin-i, owner tracing information Iowner-i or proof P1i which 
proves the coins from Xi owned by Ci; 

 Withdrawm,ls 

Withdrawm 
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• On input (Ci(SKCi), B(PKCi, VPKCi)), the protocol LossCoinTrace can not output loss 
tracing information Iloss-i or a proof P2i which proves the validity of the loss register; 

• On input (π1, π2) of the same coin, in some Deposit protocol, B accepts the same coin 
spent twice with serial number Θi,j ∈ Ai twice, i.e., B accepts (Θi,j, π1, j) and (Θi,j, π2, j) and 
cannot find the double-spending behavior; 

• On input (π1, π2) of the same coin, DoubleSpendTrace cannot output double-spender’s 
public key or the related information of the coins in Xi from double-spender for tracing; 

• On input (π1, π2) of the same coin, DoubleSpendTrace cannot output the proof P3i, which 
proves that Ci with PKCi is double-spender or all the traced coins are owned by the 
double-spender Ci. 

— Anonymity of customer.  A generates B’s pulic key PKB and then plays the following 
games arbitrarily: 
Game R1 
• (1) PK of Ci  In the phase, A can request and receive any PKCi (public key) of Ci, that is 

generated in Setup phase. 
• (2) Withdrawing with Ci  A performs Withdraw protocol with Ci: Withdraw(C(SKCi, PKB, 

n), A(state, n)); Xj is Ci’s output after the j’th withdrawing, and Xj could be the error 
message, e.g., Xj is invalid. 

• (3) Spending from Xj  A performs Spend protocol with Ci if Xj is valid: Spend(C(Xj, PKB, 
SKCi), A(state)). And A cannot request Ci to spend the same coin more than once. 

Game R2  The phases (1) and (2) are the same as them in Game R1, but in the phase (3), A 
performs Spend protocol with a simulator S X-Y (A) (params, auxsim, PKB). 

Without the knowledge of x about Game Rx, A guesses x' of Game Rx' , where x, x'∈{0,1}. 
Anonymity of customer means that δ = (Prob(x' = x) - 1/2) is negligible for the PPT A. 
— Strong Exculpability.  A has the knowledge of secret key SKB and SKC of collusive C and 
can act as B or S or collusive C in sytem protocols. A can choose any honest Ci with public key 
PKCi and perform system protocols with him arbitrarily. If any of the following cases occurs, A 
wins this game. 
• Case1: If Ci is honest, i.e., Ci never double-spends one coin, DoubleSpendTrace algorithm 

outputs (P3i, PKCi, IXi); 
• Case2: If Ci is honest, A gets some valid spending proof (πi, auxi, Θi) where Θi is the serial 

number of some coin, but Ci has not spent the related coin; 
• Case3: If Ci spends one coin twice, A gets (π1i, aux1i, Θdi) and (π2i, aux2i, Θdi) respectively. 

Then (P3i, PKCi, IXi) is the output of DoubleSpendTrace algorithm on input (π1i, π2i). Then 
DoubleSpendTrace algorithm outputs (P3i', PKCi, IXi′, Θ'di), but Ci does not spend the coin 
with Θ'di twice; 

• Case4: If Ci spends one coin twice, A gets (π1i, aux1i, Θdi) and (π2i, aux2i, Θdi) respectively. 
Then (P3i, PKCi, IXi) is the output of DoubleSpendTrace algorithm on input (π1i, π2i). Then 
A gets some valid spending proof (π′i, aux′i, Θ′i), but Ci has not spent the related coin. 

Strong Exculpability means the probability that the PPT A wins the above game is negligible. 

5. Tracing Mode of the Proposed Compact E-cash Scheme 
In the proposed scheme, only when crimes occur, TTP has the power to execute unconditional 
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coin-tracing (according to the information from withdrawal protocol provided by bank) and 
unconditional owner-tracing (according to the information from deposit provided by shop). 
When customer registers for his lost coins, bank executes the lost-coin tracing without TTP. 
When customer spends a coin twice, bank executes the double-spender/coin tracing without 
TTP. From Fig. 2, we can see that the system with the basic tracing functions can be 
independent of TTP, that is to say, unconditional tracing is optional in our system. 
 

 
 T : TTP           B : bank           C : customer          S : shop          CL : clearing house 
 (1): Unconditional coin-tracing           (3): Lost-coin tracing 
 (2): Unconditional owner-tracing           (4): Double-spender/coin-tracing 

Fig. 2.  Compact E-cash system providing complete and practical tracing 

6. Compact E-cash with Practical and Complete Tracing 

6.1 Overview of the Proposed Scheme 
  Withdrawal Protocol 
C and B generate the wallet parameters (e1, e2, x) which are used to generate 2l coins, and B 

signs them using CL signature [38]. Then to achieve loss tracing and unconditional tracing, C 
provides two ElGamal encryptions—— ElGamalPKC(ge2) encrypts ge2 using C’s public key PKC 
and ElGamalPKT(ge2) encrypts ge2 using T’s public key PKT. Also, C provides the knowledge 
proof (SPK) to prove the encryptions are generated correctly. 
  Payment Protocol 
C performs the protocol with S to spend one of coins from C’s wallet. 
(1) To prove the validity of coin, C provides the zero-knowledge proof of (e1,e2,x) to prove 

that the coin spent in this protocol is from some signed wallet. 
(2) To achieve loss tracing and unconditional tracing, C computes T2 = gH(J║r)e2 (mod nT) 

with the random input r, where nT is RSA modulus and T has its factor knowledge, integer 
J∈[0, 2l-1]. C also provides the zero-knowledge proof to prove that T2 is generated correctly. 

(3) To prevent double-spending, C provides the serial number of coin, i.e., Θ = PRF(e2, J), 
where PRF( ) is a pseudorandom function with the secret seed e2 and the public input J. The Θ 
records the spent coins for B and the integer J∈[0, 2l-1] records the spent coins for C. So C’s 
wallet contains 2l coins. Also, C provides the zero-knowledge proof to prove that Θ is 
generated correctly. 

(4) To efficiently achieve double-spending tracing without TTP, C constructs a special 
knowledge proof of e1, i.e., PKΘ(e1), which is related to Θ. The special property of PKΘ(e1) is 
that if showing PKΘ(e1) with the same Θ twice, i.e., spending the same coin twice, the 
knowledge of (e1,e2) is leaked. The details of PKΘ(e1) are provided in the following part. 

(1) 
 

(2) 
 T 

Information of 
withdrawal 

 

Information of 
deposit 

 

Compact E-cash system 

(3) 

B 
 

B 
 

CL settlement settlement 
 

C 
 

S 
 

Spend K times 

  Withdraw once Deposit   Lost 
 -coins 
 register 

Double- 
spending 

proofs 

(4) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019                                         3741 

 Deposit Protocol 
S sends B the information generated by C in the above payment protocol. B verifies it as S 

does in payment protocol and makes sure that the coin is spent only once. 
  Loss Register Protocol 
For registering to trace his lost coins, C sends B the information of remaining coins, i.e., 

LRx, which is just shown in loss register protocol so that it does not affect C’s anonymity when 
spending the remaining coins. Then B sends C the ElGamalPKC(ge2) and the related 
zero-knowledge proof of it. After verifying the related zero-knowledge proof, C believes that 
the ElGamalPKC(ge2) was generated by himself in withdrawal protocol and then uses his private 
key to decrypt ElGamalPKC(ge2) so as to get the ge2. 
  Practical Complete Tracing 
  Unconditional tracing 
 Unconditional coin-tracing : Getting the information of withdrawal from bank, T uses 
the private key to decrypt ElGamalPKT(ge2) and publishes ge2. In payment protocol, T2 = 
gH(J║r)e2 (mod nT) will be provided to S with the shown J and r, so T2 can be identified if ge2 
is known, that is to say, all the coins can be traced. 
 Unconditional owner-tracing: Getting the information of deposit from shop, T uses 
the factor knowledge of nT to compute the inverse of H(J║r) so as to get ge2 from T2, then T 
can identify the owner according to withdrawal database. 

  Double-spending tracing 
 Double-spender-tracing: If C double-spends a coin, he has to use the same J more than 
once, that is, he has to show the same Θ = PRF(e2, J) more than once, so it can be found out 
by B. As mentioned earlier, if showing the special knowledge proof PKΘ(e1) with the same 
Θ twice, (e1,e2) will be leaked. Since e1 is used as tracing information of customer in 
withdrawal protocol, the double-spender can be traced. 
 Double-spender’s coin-tracing: With the leaked e2, every Θ=PRF(e2, J) is computed and 
published for J∈[0, 2l-1] so that the coins from double-spender cannot be spent anymore. 

  Lost-coin tracing 
 After loss register, B publishes ge2. In payment protocol, T2 = gH(J║r)e2 (mod nT) is 
provided to S with the shown J and r, S can identify T2 after ge2 is published so that the lost 
coins cannot be spent by others. 

Then, we provide the detailed scheme. 

6.2 System Setup 
Let ε>1, k, ls, lp and lps be security parameters. λ1, λ2, γ1 and γ2 denote bit-length satisfying 
λ1>ε(λ2+k)+2, γ1=lps+2, γ1>ε(γ2+k)+2, γ2,λ2>k. And Λ = [2λ1-2λ2, 2λ1+2λ2] and Γ = [2γ1-2γ2, 2γ1+2γ2]. 
H( ) is a hash function: {0, 1}* → {0, 1}k. 
B (bank)’s Setup: 

Select random secret lp-bits primes p′ and q′, and p = 2p′+1, q = 2q′+1 are primes. Provide 
the zero-knowledge proof to prove that n = pq is the product of two safe primes [39]. 
T (trusted authority)’s Setup: 

Select a random lps-bits prime ns, and lps=ε(λ2+k)+2k+2>λ1. Select two secret lp-bits primes 
p″ and q″ such that pT = 2p″+1 and qT = 2q″+1 are primes. Prove that nT = pTqT is the product of 
two safe primes [39] with the zero-knowledge proof. Choose the elements a, a0, a1, a2 of QR(n) 
of order p′q′, g of QR(nT) of order p″q″ [35]. K1∈R Ils and set h=gK1(mod nT). 
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C (customer)’s Setup: 
SKC∈R Ils and set PKC = gSKC (mod nT). 
The system public parameters are PK=(n,ns,nT,a,a0,a1,a2,g,h), B’s private key is p′, T’s 

private key is (p″,K1), and C’s private key is SKC. 

6.3 Withdrawal Protocol 
As Fig. 3 presents, C and B generate cash parameters (x, e1, e2) together, then B computes the 
CL signature [38] (i.e., (A, e)). As mentioned in section 6.1, (A1, A2) is ElGamalPKC(ge2) which 
encrypts ge2 using C’s public key PKC for loss tracing and (A2, A3) is ElGamalPKT(ge2) which 
encrypts ge2 using T’s public key h for unconditional tracing. Then C gets (x, e1, e2, A, e, rC) 
satisfying Ae≡ a0axa1

e1a2
e2 (mod n), and rC is the series number of wallet. W and W1 guarantee the 

correctness of computations, and W uses the method in [35] to prove the value range of e1. 
  C                    B 
x,e1∈R[2λ1-2λ2,2λ1+2λ2], e2C∈R [0, ns-1] 
TC = a x∙a1

e1∙a2
e2C     (mod n),  rC∈R Ils 

W=SPK(α,β,γ,χ: PKC=gχ∧TC=aα∙a1
β∙a2

γ∧β∈[2λ1-2ε(λ2+k),2λ1+2ε(λ2+k)])(rC) 
        TC, rC, W, PKC 

       Verify W, choose a prime e∈RΓ, e2B∈R [0, ns-1] 
             Compute A ≡  (a0·TC·a2

e2B)1/e 
             A, e, e2B 
Verify e2B∈R [0, ns-1], e∈Γ 
Verify Ae ≡ a0TC∙ a2

e2B ≡ a0∙ a x∙a1
e1∙a2

e2C +e2B 
  ≡ a0∙axa1

e1a2
e2 (mod n) 

A1=ge2PKC
e1 (mod nT)      A2=ge1 (mod nT) A3=ge2he1 (mod nT) 

W1= SPK(α,β,γ: Ae = a0aαa1
βa2

γ∧A1=gγPKC
β∧A2=gβ∧A3=gγhβ) 

                 A1, A2, A3, W1 
               Verify W1, Store rC, W, A1, A2, A3, W1 
                Record a debit of 2l coins for C’s account 

Fig. 3.  Withdrawal protocol  (∈R denotes choosing at random) 

6.4 Payment Protocol 
As we sketched in the section 6.1, 

(1) To prove the validity of coin anonymously, C conceals the wallet T1=Ahw (mod n) [8] 
and provides the zero-knowledge proof of it—— since Ae ≡ a0axa1

e1a2
e2 (mod n), C provides 

PK1(e, x, e1, e2, ew: a0 = T1
e∕(axa1

e1a2
e2hew)) as the zero-knowledge proof of the wallet ownership. 

For simplifying denotation, we directly use the parameter name in PK( ). 
(2) To achieve loss tracing and unconditional tracing, C computes T2 = gH(J║r)e2 (mod nT) with 

the random r. C also provides the zero-knowledge proof PK2(e2: T2 = gH(J║r)e2). 
(3) To prevent double-spending, C provides the serial number of coin Θ =a1J

 (J+e2)-1 (mod ns) 
(mod n) with J∈[0,2l-1] and PK3(e2: Θ=a1J

(J+e2)-1 (mod ns)) proving the correctness of Θ. 
 Since Θ(J+e2) = a1J

 (J+e2)-1 (mod ns) (J+e2) = a1J
 tns+1  (mod n)     t∈Z 

           Θe2 = a1J
 tns+1/ΘJ (mod n) 

 That is to say, PK3(e2: Θ=a1J
(J+e2)-1 (mod ns)) = PK (t, e2: T=a1J

 tns+1 ∧ Θe2=T/ΘJ). 
(4) To achieve double-spending-tracing without TTP, C constructs a special knowledge 

proof PKΘ(e1). It leaks (e1,e2) if showing PKΘ(e1) with the same Θ twice. Now we clarify it. 
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According to Definition 3, to prove the discrete logarithm knowledge in y=gα, first, prover 
shows verifier the commitment gr with a random integer r, after receiving the random tr from 
verifier, gets the challenge c=H(y║g║gr║tr) and then computes the challenge-response 
s=r-cx. Therefore, gr=gsyc (or c=H(y║g║gsyc║tr)) is the knowledge proof of y=gα. 

The idea of constructing PKΘ(e1) is to replace r with (J+e2)-1 (mod ns) in the knowledge 
proof of e1. If showing PKΘ(e1) with the same Θ twice, there are two challenge-response 
equations: sσ = (J+e2)-1 (mod ns)−c(e1−2λ1) and s'σ = (J+e2)-1 (mod ns)−c'(e1−2λ1), so it is easy to 
compute (e1,e2) from the two challenge-response equations. For achieving it, C computes 
d1=T1

r1∕[ar2a1
(J+e2)-1(mod ns)a2

r3hr4] as the commitment of PK1(e,x,e1,e2,ew: a0=T1
e∕(axa1

e1a2
e2hew)), 

that is to say, (J+e2)-1 (mod ns) replaces r in d1. And C must provide the zero-knowledge proof 
PK4(δ: Θ=a1J

δ∧d1=T1
r1∕(ar2a1

δa2
r3hr4)). So PK3 and PK4 guarantee that one challenge-response 

of PK1 is sσ = (J+e2)-1 (mod ns) −c(e1−2λ1). 
The special design changes the construction of zero-knowledge proof. So we must prove: 
• the security of construction of zero-knowledge proof is preserved; 
• (J+e2)-1 (mod ns) can be used as a pseudorandom function in this construction; 
• the special knowledge proof has the zero-knowledge property. 
The proofs of the above security properties are provided in the section 7. 
 

 C                     S 
T1=Ahw (mod n),    T2=gH(J║r)e2 (mod nT)       with w, r∈R Ik 
a0=T1

e∕(axa1
e1a2

e2hew) (mod n) from Ae=a0axa1
e1a2

e2 (mod n) 
           r1∈R Iε(γ2+k), r2∈R Iε(λ2+k), r3∈R Iε(lps+k), r4∈R Iε(γ1+2k) 
d1=T1

r1 ∕ [ar2a1
(J+e2)-1(mod ns)a2

r3hr4]     (mod n) 
a1J =H(a1║J),   Θ =a1J

 (J+e2)-1 (mod ns) (mod n) 
           T1, T2, d1, J, r, Θ 

                             Choose v∈R  Ik, tr={IDS║v} 
                       tr 
c = H(tr║T1║T2║d1║Θ) ≠ 0 
s1 = r1 − c(e − 2γ1)  (in Z) 
s2 = r2 − c(x − 2λ1)  (in Z) 
sσ = (J+e2)-1 (mod ns)−c(e1−2λ1) (in Z) 
s3 = r3 − ce2   (in Z) 
s4 = r4 − cew   (in Z) 
PK2-4(e2,δ,r1,r2,r3,r4: T2=gH(J║r)e2∧Θ =a1J

 (J+e2)-1 (mod ns) 

          ∧Θ= a1J
δ (mod ns)∧d1=T1

r1 ∕ (ar2a1
δa2

r3hr4)) 
           s1,s2,sσ,s3,s4, PK2-4 

       Verify c  = H(tr║T1║T2║d1║Θ) = H(tr║T1║T2 
           ║a0

cT1
s1-c2γ1/(as2-c2λ1a1

sσ-c2λ1a2
s3hs4) (mod n)║Θ) 

      Verify PK2-4, s1∈Iε(γ2+k), s2∈Iε(λ2+k), s3∈Iε(lps+k), 
           sσ∈[-2k+λ2+2λ2+1,ns+2k+λ2-2λ2-1], s4∈Iε(γ1+2k) 

 Fig. 4.  Payment protocol  (Id  denotes {0,1}d) 

For presenting our idea clearly, only the commitment and challenge-response of PK1( ) 
are provided, since PKΘ(e1) is embedded in it. And PK2( )~PK4( ) are common zero-knowledge 
proofs, so the commitment and challenge-response of them are omitted in Fig. 4 (we just use 
PK2-4 to denote the process). In fact, all the commitments are provided in the commitment stage 
and all the challenge-responses are computed in the challenge-response stage. 

(E1) 
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6.5 Loss Register Protocol 
When C loses the E-wallet with the series number rCx, he sends (rC1,…,rCx-1, rCx+1,…,rCn) of 

his remaining E-wallet to B, and it is shown in Fig. 5. As rCi is not shown when C spends 
E-cash, the anonymity of C and the unlinkablity of spending will not be influenced. Note that 
only after B confirms the quantity of all unspent coins in system, that is to say, after a period, C 
gets the refund from B. In addition, B cannot refuse to perform loss-tracing unless B can 
provide the payment proof generated before B publishes loss-tracing information in system. 

 C                     B 
LRx={(rC1,…,rCx-1, rCx+1,…,rCn)║PKC} 
             LRx 
                   Search C’s records for the information related to rCx  
                 rCx,A1x,A2x,Wx,W1x 
Verify Wx, W1x, confirm rCx not in {rC1, …, rCn} 
T2x = ge2 = A1x / A2x

SKC (mod nT) 
Wloss =SPK(α:PKC=gα∧A1x/T2x=A2x

α)(timestampx)  
     T2x , Wloss 

               Verify Wloss, then search T2 related to T2x in database,  
        T2 = (T2x)H(J║r) (mod nT)  
    Confirm all spent J in the current database, if there are  
     unspent coins in wallet, publish T2x for Lost-coin tracing. 

Fig. 5.  Loss Register Protocol 

6.6 Deposit Protocol 
S sends B the payment proof (i.e., Proofpayment = (T1,T2,J,r,Θ,tr,c,s1,s2,sσ,s3,s4,PK2-4)). B 

verifies Proofpayment as S does in Fig. 4, then B searches Θ in database. If there is the same Θ 
with the same J and a different c, it indicates that the Proofpayment is generated by some 
double-spender. Therefore, it results in Double-spending tracing. However, if there is the same 
(Θ, J, c) in B’s database, it indicates that S deposits this coin twice, and B will abort it. 
Otherwise, B records the Proofpayment and terminates this protocol. 

6.7 Complete Tracing 
Double-spending tracing 

If C spends the same coin twice, B can trace the double-spender and his coins. 
 Double-spender tracing from Bank 

 sσ  = (J+e2)-1 (mod ns) −  c(e1− 2λ1) 
 s'σ = (J+e2)-1 (mod ns) −  c'(e1− 2λ1) 
B can compute e1 and e2 from the equation set. 
 e1 = (sσ-s'σ)/(c'-c) + 2λ1 
 e2 = [sσ+c(sσ-s'σ)/(c'-c)]-1 (mod ns)−J 
Since A2= ge1 (mod nT), A2= g(sσ-s'σ)/(c'-c) + 2λ1 (mod nT)……………(e1) 
Therefore, the double-spender with PKC will be found according to A2 stored in withdrawal 

database. Wdouble = (Θ, J, tr, trʹ) proves that some C double-spends, and (Wdouble,(e1),W,W1) 
prove that C with PKC double-spends. 
 Double-spender’s coin tracing from Bank 

Since Θ = a1J
 (J+e2)-1 (mod ns) (mod n), Θ* = a1J

 {J*+ [sσ+c(sσ-s'σ)/(c'-c)]-1 (mod ns)−J}-1 (mod ns) (mod n) …(e2) 
So B can compute Θ* for every J* and identify all e-coins in the double-spender’s e-wallet. 
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And (Wdouble , (e2)) prove that the coins belong to a double-spender. 
Unconditional tracing 

When E-cash is connected with crimes, T can do the following tracing. 
 Unconditional owner-tracing from T 

T gets J, r and T2 from payment, and T2 = gH(J║r)e2 (mod nT). Then T uses the private key p″ 
to compute H(J║r)-1 (mod p″q″), T2

H(J║r)-1= gH(J║r)e2 H(J║r)-1 = ge2 = Ω (mod nT) ………(e3) 
Searching for (A2, A3) in withdrawal database, if A3/A2

K1 = Ω (mod nT), T finds the coin 
owner. W2 = (J, r, T2, (e3)), and (W, W1, W2) prove that C with PKC is the coin owner. 
 Unconditional coin-tracing from T 

T gets A2 and A3 from withdrawal. Since A2= ge1 (mod nT), A3= ge2he1 (mod nT), ge2 = A3 / A2
K1  

(mod nT). Then in payment protocol, T2 =  gH(J║r)e2 = (A3/A2
K1)H(J║r)  (mod nT). 

So the coin from the wallet will be identified when it is spent. W3 = SPK (α: ge2 =A3/A2
α ∧ 

h=gα ∧T2=(A3/A2
α)H(J║r) ), and (W1, T2, W3) prove that the e-coins are from the traced wallet. 

Lost-coin tracing 
 Lost-coin tracing from B 

After Loss Register, all coins in the lost e-wallet will be traced if T2x = ge2  (mod nT) is 
published in system. That is to say, T2 = gH(J║r)e2 = (T2x)H(J║r) (mod nT) in payment. 

So the coin from the lost wallet will be identified when it is spent. And (Wloss, W, W1) prove 
that the spending coin has been registered for lost-coin tracing by the actual owner with PKC. 

7. Security of the Proposed Scheme 
As we analyzed in section 6.4, the main idea of the proposed scheme is to construct the special 
knowledge proof. To achieve it, replacing random r with (J+e2)-1 (mod ns) to construct the special 
challenge-response sσ=(J+e2)-1 (mod ns)−c(e1−2λ1). Therefore, the key issues of security are: 

• the security of construction of zero-knowledge proof is preserved; (Theorem 1) 
• (J+e2)-1 (mod ns) can be used as a pseudorandom function in this construction; (Theorem 2) 
• the special knowledge proof has the zero-knowledge property. (Theorem 3) 
Then we provide the proofs of the key issues first. 

Theorem 1. When each serial number of coin Θ is used only once, none of proven parameters 
can be computed from challenge-response equations under discrete logarithm assumption. 
Proof . In the payment protocol, PK3 proves that Θ is generated correctly, and PK3 and PK4 
guarantee that one challenge-response of PK1 is sσ=(J+e2)-1

 (mod ns)−c(e1−2λ1) ……(e4). So 
using a Θ only once indicate that there is only one equation set (E1) for each Θ, (e4) is the only 
one that is not a standard challenge-response. Because the other knowledge proofs are the 
standard knowledge proofs, the related proven parameters cannot be computed from 
challenge-response equation set. In addition, the single (e4) has arbitrary solutions in their 
value ranges of e1 and e2. When K coins from the same wallet are spent, (e4) from the 
respective equation sets (E1) constitute (E2), and the coefficient matrix M1 of (E2) is as 
follows: 
 
 

   (J1+e2)-1  (mod ns) − c1e1   = sσ1      − c12λ1 
   (J2+e2)-1  (mod ns)  − c2e1  = sσ2      − c22λ1 
     ⁞ 
   (JK-1+e2)-1 (mod ns)−cK-1e1 = sσ(K-1)−c K-12λ1 
   (JK   +e2)-1 (mod ns)− cK e1  = sσK      − cK2λ1 
              (J1+e2)-1      (J2+e2)-1  …    (JK-1+e2)-1      (JK   +e2)-1        e1 

    (E2) 
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   1             0      …       0               0           c1 
         0             1      …       0               0           c2  
                    ⁞ 
   0             0      …       1               0           cK-1 
         0             0      …       0               1            cK 
The row vectors of M1 are: 
 α1   = ( 1   0    …   0   0   c1  )  αK-1= ( 0   0   …   1   0  cK-1 ) 
 α2   = ( 0   1     …   0   0   c2  ) ……… αK  = ( 0   0   …   0   1   cK  ) 
If want to compute (J1+e2)-1, it indicates that there is the matrix as below (the constant Δ≠0) 

after elementary transformation, but it will be proven to be infeasible. 
            (J1+e2)-1       (J2+e2)-1…     (JK-1+e2)-1       (JK   +e2)-1          e1 
   Δ             0     …        0               0           0 
         0             1     …        0               0           c2  
              ⁞ 
   0             0     …        1               0           cK-1 
         0             0     …        0               1            cK 

So there are (k1,k2,…,kK-1,kK) satisfying (Δ   0 … 0   0   0) = k1⋅α1+k2⋅α2+…+ kK-1⋅αK-1+ kK⋅αK. 
That is to say, k1   + 0     +… +  0        + 0      =  Δ 
   0    + k2    +…+   0        + 0      =  0 
           ⁞ 
   0    + 0     +…+   kK-1       +  0     =   0 
   0    + 0     +…+    0       +  kK      =  0 
   k1c1+ k2c2 +…+ kK-1cK-1 + kKcK  =  0 
We have k2= k3=…=kK-1=kK =0, k1=Δ≠0, so c1=0. However, it will be found by the customer 

when spending the coin if c=0. Therefore, computing (J1+e2)-1 (mod ns) is infeasible. And for 
the same reason, (Ji+e2)-1 (mod ns) can not be figured out, where 2≤ i ≤ K. 

Anyone who tries to compute e1 must get the following coefficient matrix (Δ≠0). 
             (J1+e2)-1        (J2+e2)-1…    (JK-1+e2)-1       (JK   +e2)-1          e1 
   0             0     …        0               0           Δ 
         0             1     …        0               0           c2  
              ⁞ 
   0             0     …        1               0           cK-1 
         0             0     …        0               1            cK 

So there are (k1,k2,…,kK-1,kK) satisfying (0   0 … 0   0   Δ) = k1⋅α1+k2⋅α2+…+ kK-1⋅αK-1+ kK⋅αK. 
That is to say, k1   + 0     +… +  0        + 0      =  0 
   0    + k2    +…+   0        + 0      =  0 
           ⁞ 
   0    + 0     +…+   kK-1       +  0     =   0 
   0    + 0     +…+    0       +  kK      =  0 
   k1c1+ k2c2 +…+ kK-1cK-1 + kKcK =  Δ 
We have k1= k2=…=kK-1=kK =0, and it contradicts Δ≠0, so figuring out e1 is also infeasible. 
So e1 and e2 cannot be computed from (E1) or (E2). Therefore, none of proven parameters 

can be computed if the customer never spends the same coin twice.  � 
Theorem 2. Suppose (s(k), 2a(k), ε(k)) -DDHI assumption holds. (i) f1e2(J)=a(J+e2)-1

 is the (s'(k), 
ε'(k)) pseudo-random function for the one who has no knowledge of e2, and s'(k)= 
s(k)/[2a(k)·poly(k)], ε'(k) = 2a(k)∙ ε(k). (ii) If the one who has no knowledge of e2 cannot use the 
extended Euclidean algorithm to compute inverse of f2e2(J), f2e2(J)=(J+e2)-1 (mod ns) is the (s"(k), 
ε"(k)) pseudorandom function, and s"(k) = s(k)/[2a(k)·poly(k)], ε"(k) = 2a(k)· ε(k). 
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Proof . For the sake of contradiction, suppose there exists the algorithm A, which (s'(k), q, 
ε'(k))-breaks the pseudorandom function, i.e., runs in s'(k) time, and can identify f1e2(J0) = 
a'(J0+e2)-1 with the probability at least 1/2+ε'(k), where (J0, a'(J0+e2)-1) is any unseen point of the 
function f1e2(J). Then we can construct the algorithm B, which interacts with A to break the 
q-DDHI assumption —— based on a random instance (a, aα, … , a(αq)) of the q-DHI problem, 
the goal of algorithm B is to identify a1/α. Let J0 = α − e2 where e2 and α are unknown to A and 
B. And the error probability could be decreased by changing J0 and executing this algorithm 
sufficiently many times. Note that (a, ae2, … , a(e2

q)) can be computed from (a, aα, … , a(αq)) 
according to Binomial Theorem. 

Input to the reduction: (a, aα, … , a(αq), Γ) ∈ Gq+2, where Γ is either a1/α or a random 
element in G. Its goal is to output 1 if Γ = a1/α and 0 otherwise. 

Then B interacts with A as follows: 
Query: A outputs a list of distinct qs serial numbers J1, …, Jqs, and qs < q. Because A 

reveals the queries in advance, we could assume A outputs q-1 serial numbers to be responded 
(if the number is less, reduce the value of q to satisfy q=qs+1). 

Response: B computes the polynomial f(y)=∏ i=1 (y+Ji). 
Then we have f(y) = ∑ i=0 αi yi by expanding f(y), where α0, …, αq−1∈Zn are the coefficients 

of the polynomial f(y). 
   aʹ  = ∏ a 

αi e2
i = a 

f(e2) ∏ aαi-1 e2
i = ae2 f(e2) = (a') e2 

Then give a' to A. Ans we can assume that f(e2) ≠ 0, because otherwise, e2 = -Ji for some i 
means B has got the secret e2. Then for each i = 1, …, q-1, B  computes Ri and responds it to A 
as follows: let fi(y) be the polynomial fi (y) = f(y)/(y + Ji) = ∏ j=1,j≠i (y + Ji). We can expand it as 
fi(y) = ∑ j=0  βj  y j. 

   Ri = ∏ a 
βj e2 j = a fi (e2) = (a')1/(e2 + Ji) 

So B can give A the q-1 responses R1, …, Rq-1 without the knowledge of e2. 
Challenge:   A claims that he can distinguish a' 1/(e2+J*) = a 

 
f(e2)/(e2+J*) from a random element 

in G. If J* ≠ J0, then repeats the algorithm again. Otherwise, A claims that he can distinguish    
a' 1/(e2+J0) = a 

 f(e2)/(e2+J0) from a random element in G where J0 ∉ {J1, …, Jq-1}. Now compute 
   f(y) / (y + J0) = ∑ γi yi + γ-1/(y + J0) 

where γ-1≠ 0 since f(y) = ∏ i=1 (y+Ji) and J0 ∉ {J1, …, Jq-1}. So 
a' 1/(e2+J0)  = a 

 f(e2)/(e2+J0) = a ∑
 i=0    γi e2

i + γ-1/(e2 + J0) = Γ0 ∙ a γ-1/(e2 + J0)  = Γ0 ∙ (a1/α) γ-1 

Because Γ0 = ∏(a 
e2

i) γi is computed from this algorithm, if Δ=a' 1/(e2+J0) and Γ=a1/α, Δ=Γ0∙Γ γ-1. 
So B can distinguish a1/α from (a,aα,…,aαq) according to the guess about Δ=a' 1/(e2+J0) from A. 
Guess: A outputs a guess b∈{0, 1} for Δ, and then B outputs a guess b'∈{0, 1} for Γ. 
The main running time of the reduction is the time of simulating oracle queries. Since A can 

make at most s'(k) queries, the running time of B is s'(k)∙[2a(k)·poly(k)]. And the advantage of B 
is ε'(k)/2a(k). So s'(k) = s(k)/[2a(k)·poly(k)], and ε'(k) = 2a(k)∙ ε(k). 

Challenge and Guess following C: Algorithm C, which (s"(k), ε"(k))-breaks the 
pseudo-randomness of f2'e2(J)=(J+e2)-1, claims to be able to distinguish P*=(J0+e2)-1 from a 
random element without the knowledge of e2 (Theorem 1 guarantees the extended Euclidean 
algorithm cannot be used). If Γ = a1/α, aʹP*=aʹ1/(e2+J0) =Γ0∙Γ γ-1……(e5). Giving P* to algorithm C, 
C outputs a guess dguess ∈{0, 1} for P*=(J0+e2)-1. Then B outputs d'guess for Γ according to (e5).  

    i=0 

q−1 

 q−1 

q−1 

   i=0 

 q 

    i=1 

 q−1 

 q−2 
q-2 

 j=0 

 q−2 

  i=0   q−1 

  q−2 

 q−2 

   ? 

   ? 
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Therefore, without the knowledge of e2, the pseudorandom property of  f2'e2(J)=(J+e2)-1 is 

proven if no one can use extended Euclidean algorithm to compute inverse of it, so the 
pseudorandom property of  f2e2(J)=(J+e2)-1 (mod ns) is proven. Likewise, f2e2(J)=(J+e2)-1 (mod ns) is 
a (s"(k), ε"(k)) pseudo-random function, and s"(k)=s(k)/[2a(k)·poly(k)] and ε"(k)= 2a(k)∙ ε(k). � 
Theorem 3. If customer never spends the same coin twice, the knowledge proof in payment 
protocol has the statistical zero-knowledge property under q-DDHI assumption. 
Proof . We only need to prove that (c, sσ)∈{0,1}k×{-2k+λ2+2λ2+1,…, ns+2k+λ2-2λ2-1} from the 
non-standard knowledge proof has the statistical zero- knowledge property (it will be proven 
in Theorem 6 that the special knowledge proof  is the knowledge proof of e1). To be concise, 
suppose y=a1

e1, (c, sσ)∈ {0,1}k×{-2k+λ2+2λ2+1,…, ns+2k+λ2-2λ2-1} satisfying c = H(yc·a1
sσ-c2λ1). 

According to Theorem 2, (Ji+e2)-1 in the construction of payment is a random element to 
the one who has no knowledge of e2. The generating mode in the withdrawal protocol 
guarantees that (Ji+e2) (mod ns) uniformly distributes over [1, ns-1], and so does (Ji+e2)-1 (mod ns), 
since every inverse of (Ji+e2) (mod ns) is unique and distinct from each other in [1, ns-1]. 

To prove statistical zero-knowledge property of the knowledge proof, let us show that the 
simulator which uniformly chooses the challenge, can simulate this protocol-conversation 
which is statistically indistinguishable from the protocol-conversation with C. 

The simulator randomly chooses c̅ from {0,1}k and s̅σ from {-2k+λ2+2λ2+1,…, ns+2k+λ2-2λ2-1} 
satisfying uniform distribution. Using the values, the simulator computes Δ̅ = yc̅a1

s̅σ-c̅2λ1 (mod n) 
[40]. For proving that the values are statistical indistinguishable from a view of a protocol run 
with C, we will show the probability distribution PSσ(sσ) of response sσ from C and the 
probability distribution PS̅σ (s̅σ). 

In payment protocol, sσ = (J+e2)-1 (mod ns)−c(e1−2λ1), where 0<(J+e2)-1<ns, and (J+e2)-1 
uniformly distributes over [1, ns-1] as we analyze above. The e1 is chosen from [2λ1-2λ2, 2λ1+2λ2], 
and c (i.e., the output of H( )) can be any distribution over {0,1}k. And lps

= ε(λ2+k)+2k+2. 
   = 0  for sσ < -2k+λ2+2λ2+1 
   ≤ (ns-1)-1        for -2k+λ2+2λ2+1 ≤ sσ < 2k+λ2-2λ2+1 
  PSσ(sσ) = (ns-1)-1        for 2k+λ2-2λ2+1 ≤ sσ ≤ ns-2

k+λ2+2λ2-1 
   ≤ (ns-1)-1        for ns-2

k+λ2+2λ2-1 < sσ ≤ ns+2k+λ2-2λ2-1 
   = 0         for ns+2k+λ2-2λ2-1< sσ 
Let us provide a brief explanation of PSσ(sσ). 
P(sσ =2k+λ2-2λ2+1) = ∑P((J+e2)-1 (mod ns)−c(e1−2λ1) = 2k+λ2-2λ2+1) 

= P((J+e2)-1 (mod ns)=1, c(e1−2λ1)=-2k+λ2+2λ2) + P((J+e2)-1 (mod ns)=2, c(e1−2λ1) =-2k+λ2+2λ2+1) 
   + … + P((J+e2)-1 (mod ns)= ns-1, c(e1−2λ1)= ns-2

k+λ2+2λ2-2) 
= (ns-1)-1 [P(c(e1−2λ1)=-2k+λ2+2λ2) + P(c(e1−2λ1) =-2k+λ2+2λ2+1) + … + P(c(e1−2λ1)= ns-2

k+λ2+2λ2-2)] 
= (ns-1)-1 [P(c(e1−2λ1)=-2k+λ2+2λ2) + P(c(e1−2λ1) =-2k+λ2+2λ2+1) + … + P(c(e1−2λ1)= 2k+λ2-2λ2)] 
= (ns-1)-1 ∙ 1 = (ns-1)-1 

 
The Fig. 6 presents the distribution of PS̅σ (s̅σ) and PSσ(sσ). 
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Fig. 6.  The Distribution of PS̅σ (s̅σ) and PSσ(sσ) 
 

Then we have 
∑| PS(α) – PS̅(α͞) | = ∑ | PS(α) –[ns+2k+λ2+1-2λ2+1-2]-1 | 
 
< (z6-z5)(z3-z2+1) + z6∙[(z4-z3)+ (z2-z1)] 
= {(ns-1)-1-[ns+2k+λ2+1-2λ2+1-2]-1}∙(ns-2k+λ2+1+2λ2+1-2) + (ns-1)-1[(2k+λ2+1-2λ2+1)+ (2k+λ2+1-2λ2+1)] 
< (ns-1)-1∙(2k+λ2+1-2λ2+1-1) + (ns-1)-1(2k+λ2+2-2λ2+2) 
= (ns-1)-1∙(2k+λ2+1-2λ2+1-1+2k+λ2+2-2λ2+2) < (ns-1)-1∙(2k+λ2+3-2λ2+3) < (ns-1)-1∙2k+λ2+3 < 1/2(ε-1)(λ2+k)+2k-2 

For ε>1, the denominator of last term of the above computation is over a polynomial in 
input length, so the distributions of sσ and s̅σ are statistical indistinguishable. Therefore, 
according to the Definition 2, the interactive protocol of payment is the honest-verifier 
statistical zero-knowledge proof.      � 
Theorem 4. Under Discrete Logarithm assumption, the non-standard challenge-response 
sσ=(J+e2)-1 (mod ns)−c(e1−2λ1) is computed correctly in the challenge-response equation set (E1). 
Proof . In payment protocol, PK3(e2: Θ=a1J

(J+e2)-1 (mod ns)) and PK4(δ: Θ=a1J
δ∧d1=T1

r1∕(ar2a1
δa2

r3hr4)) 
prove that d1=T1

r1∕[ar2a1
(J+e2)-1(mod ns)a2

r3hr4], which is used as a commitment of zero-knowledge 
proof about the discrete logarithm knowledge of a0=T1

e∕(axa1
e1a2

e2hew), C shows sσ satisfying 
d1 = a0

cT1
s1-c2γ1/(as2-c2λ1a1

sσ-c2λ1a2
s3hs4) (mod n) =T1

r1∕[ar2a1
(J+e2)-1(mod ns)a2

r3hr4] 
Without the discrete logarithm knowledge of (a0,T1,a,a1,a2,h) to each other, the exponents 

of a1 are equal: sσ+c(e1−2λ1) = (J+e2)-1 (mod ns) + k0∙ns……(e6), where (J+e2)-1 (mod ns) denotes the 
value of the inverse of (J+e2) is in [1, ns-1] and k0 is any integer. If k0=0, sσ=(J+e2)-1 (mod 
ns)−c(e1−2λ1) so that the tracing can be performed correctly. We present how to guarantee k0=0. 

( 1 )  If C executes payment protocol honestly, k0=0. From c∈[1,2k-1], (e1-2λ1)∈[-2λ2,2λ2], 
and (J+e2)-1 (mod ns)∈[1, ns-1], the probability of sσ∈[-2k+λ2+2λ2+1, ns+2k+λ2-2λ2-1] is 1. And S 
verifies whether sσ∈[-2k+λ2+2λ2+1, ns+2k+λ2-2λ2-1] or not in payment protocol. 

(  2  )  If C is dishonest and computes (e6) choosing k0 ≠ 0 
○  If C computes (e6) choosing k0 = 1, i.e., sσ=(J+e2)-1 (mod ns)+ns−c(e1−2λ1). In this case, if 

sσ∈[-2k+λ2+2λ2+1, ns+2k+λ2-2λ2-1], it means -ns-2
k+λ2+2λ2+1 ≤ (J+e2)-1 (mod ns)-c(e1-2λ1) ≤ 2k+λ2-2λ2-1. 

We use Probk0=1 to denote the probability that S cannot find the deceit, 

Probk0=1 = Prob{ -ns-2
k+λ2+2λ2+1 ≤ (J+e2)-1 (mod ns)-c(e1-2λ1) ≤ 2k+λ2-2λ2-1 } 

       = Prob{ -2k+λ2+2λ2+1 ≤ (J+e2)-1 (mod ns)-c(e1-2λ1) ≤ 2k+λ2-2λ2-1 }  
       = Prob{ 1 ≤ (J+e2)-1 (mod ns) ≤ c(e1−2λ1)+2k+λ2-2λ2-1 } 
(J+e2)-1 (mod ns) uniformly distributes over [1, ns-1] since (J+e2) (mod ns) uniformly distributes 

over [1, ns-1] according to the withdrawal protocol, e1∈[2λ1-2ε(λ2+k), 2λ1+2ε(λ2+k)] according to W. 

 0 
 z3 
 

 z2 
 

 z5 
 

 z6 
 

  z1  z4 
 

  P(α) 

   α 

α∈Z α∈{-2
k+λ2+2

λ2+1,…, ns+2
k+λ2-2

λ2-1} 
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Then we have (e1−2λ1)∈ [-2ε(λ2+k), 2ε(λ2+k)].  Therefore, 
Prok0=1 < {(2k-1)∙2ε(λ2+k)+2k+λ2-2λ2-1}/(ns-1)  <  2ε(λ2+k)+k+1/(ns-1) 
Because ns is a lps-bits prime, and lps

 = ε(λ2+k)+2k+2, 
Prok0=1 <  2ε(λ2+k)+k+1/(ns-1) < 1/2k, and it is negligible (usually, bit-length of hash function k =128 or 160). 
○  If C computes (e6) choosing k0 = -1, i.e., sσ=(J+e2)-1 (mod ns)−ns−c(e1−2λ1). In this case, if 

sσ∈[-2k+λ2+2λ2+1,ns+2k+λ2-2λ2-1], it means ns-2
k+λ2+2λ2+1 ≤ (J+e2)-1 (mod ns) -c(e1-2λ1) ≤ 2ns+2k+λ2-2λ2-1. 

Probk0=-1 = Prob{ c(e1-2λ1)+ ns-2
k+λ2+2λ2+1 ≤ (J+e2)-1 (mod ns) ≤ ns-1 } 

        < Prob{ (2k-1)∙-2ε(λ2+k)+ns-2
k+λ2+2λ2+1 ≤ (J+e2)-1 (mod ns) ≤ ns-1 } 

        < [2ε(λ2+k)+k+2k+λ2-2λ2-2]/(ns-1) < 2ε(λ2+k)+k+1/(ns-1) < 1/2k 
○  If C computes (e6) with |k0|>1, it is easy to see that sσ∉ [-2k+λ2+2λ2+1, ns+2k+λ2-2λ2-1]. 
As above, Prob|k0|=1 is negligible and Prob|k0|>1= 0. Therefore, C has to computes (e6) 

choosing k0=0, i.e., it guarantees that sσ=(J+e2)-1 (mod ns)−c(e1−2λ1) is computed correctly. � 
The proposed scheme is based on our previous work [30]. Considering the similar proofs of 

Theorem 5-Theorem 8 had been provided in [30], we just present Theorem 5-Theorem 8. 
Theorem 5. Under S-RSA assumption, any PPT adversary except B, can not, with non- 
negligible probability, computes (e1,e2,x,[A,e],a0) s.t. Ae=a0axa1

e1a2
e2 (mod n) with e1,x∈Λ, 

e2∈[0, 2ns-2] and e∈Γ which is different from wallets generated in withdrawal protocol. 
Theorem 6. The knowledge proof in the proposed payment protocol is the proof of C’s 
knowledge of his wallet parameters (e1,e2,x,[A,e]) under S-RSA assumption. 
Theorem 7. No PPT adversary except C can, with non-negligible probability, generate the 
spending proof that is not actually generated by C, but the spending proof is proven to be 
generated by C under the Discrete Logarithm assumption. 
Theorem 8. Our compact E-cash scheme with (BSetup, TSetup, CSetup, Withdraw, Spend, 
Deposit, UnconditionallyTrace, LossCoinTrace, DoubleSpendTrace) guarantees Balance, 
Complete-tracing, Anonymity of customer, Strong Exculpability under S-RSA assumption and 
q-DDHI assumption in random oracle model. 

8. Efficiency Analysis 

8.1 Storage Space of some E-cash Systems 
To compare clearly, Table 2 presents the storage space of each stage in some E-cash systems. 
For achieving comparable secure level, the bit-length of order of cyclic group G is 1024 [17, 
16, 8, 20, 19, 41, 26, 30] and our scheme, and the prime order p of G1 and G2 in bilinear map is 
160 bits in [8, 21, 22, 31, 23]. We select L=10 in [22, 26] and select l=10 in [8, 21, 23] and our 
scheme accordingly, which make these schemes provide the similar functions. 
 

Table 2. Storage space for 1 coin in E-cash schemes 
 [17] [16] [8] [21] [20] [19] [41] [22] [26] [23] [31] [30] Our 

scheme System 1 System 2 

Withdrawal 
[bit] 4416 4296 5632 6112 

+3lx 1714 11570 9408 6784 24800 5120 38720 2720 
+320∙2n 5940 8406 

Payment 
[bit] 7732 7604 15565 (21l+12)

x 4768 9276 4864 6836 4800 1033216 19840 7680 2996 7836 

Deposit 
[bit] 7732 7604 18022 (21l+12)

x 5280 9276 4864 6836 4800 1033216 19840 7680 2996 7836 
Space 

complexity 
for 

2n coins 

O(2n) O(2n) O(n) O(n) O(n) O(2n) O(2n) O(2n) O(2n) O(n) O(n) O(2n) O(2n) O(n) 

 l:  quantity of bits of coin counter  x: is 160 in bilinear group, or 1024 in RSA group 
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The space complexity for 2n coins is O(n) in compact E-cash, that is to say, in [8, 21, 23] 
and our scheme, the storage space for 2n coins is the same as it (shown in Table 2) for 1 coins. 

8.2 Computation Cost of some E-cash Systems 
Since multi-based exponentiations and bilinear pairings are the main computations of the 
protocols in the systems, they are presented in Table 3, while the slight computations, such as 
modular addition computations and hash computations, are all neglected. 
 

Table 3. Computation cost for 1 coin in E-cash schemes 
 [17] [16] [8] [21] [20] [19] [41] [22] [26] [23] [31] [30] Our 

scheme System 1 System 2 

Withdrawal 
F1 18 12 12 8k+10 9 24 25 44 4299 8 242 17+22n 21 18 
F2 0 0 0 3k 2 0 0 0 44 0 294 7 0 0 

Payment 
F1 20 18 40 72l+58 37 7 13 29 35 3520+x1 50 42 8 17 
F2 0 0 0 0 8 0 0 0 14 0 246 36 0 0 

Deposit 
F1 7 6 11 21l+17 10 6 5 6 13 3520+x2 50 13 3 6 
F2 0 0 0 0 4 0 0 0 8 0 246 18 0 0 

Computation 
complexity of 
withdrawing

2n coins 

O(2n) O(2n) O(1) O(k) O(1) O(2n) O(2n) O(2n) O(2n) O(1) O(1) O(22n) O(2n) O(1) 

 F1: multi-based exponentiation  F2: bilinear pairing  l: bit-length of coin counter 
 k: cheating probability is 2-k at most in the system2 of [8]    x1, x2: related to system parameters 

 
In compact E-cash system, to withdraw 2n coins, the user performs the withdrawal protocol 

only once, so [8, 21, 23] and our scheme achieve better efficiency for 2n coins. Note that in 
divisible e-cash, the user can withdraw the coin with the value of 2n coins and use O(n) space 
to store it, but for spending one coin with 1/2n of  total value, the preparation work is costly. 

8.3 Our solution to two problems 
Our main work is to solve two problems, one is achieving the complete and practical tracing, and 
the other one is solving the efficiency problem caused by tracing customer’s coins if he 
double-spends a coin. Table 4 presents our solution to the practical and complete tracing, that 
is to say, it presents the available tracing functions in the E-cash schemes. 
 

Table 4. The available tracings in the E-cash systems 
 [17] [16] [8] [21] [20] [19] [41] [22] [26] [23] [31] [30] Our 

scheme System 1 System 2 

Double-spender tracing 
from Bank N/A N/A Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Double-spender’s coin tracing 
from Bank N/A N/A N/A Yes N/A N/A N/A N/A N/A N/A N/A Yes N/A Yes 

Unconditional owner tracing 
from TTP Yes Yes N/A N/A N/A N/A N/A Yes N/A N/A N/A N/A Yes Yes 

Unconditional coin tracing 
from TTP Yes N/A N/A N/A N/A N/A N/A Yes N/A N/A N/A N/A Yes Yes 

Lost-coin tracing 
from Bank N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A Yes Yes 

Compact E-cash which can 
trace double-spender’s coins               

 Yes: the scheme provides this tracing   N/A: this tracing function is not available 
 
According to Table 4, the system 2 of [8], [31] and ours are compact E-cash systems which 

can trace double-spender’s coins (providing it without TTP), and to the best of our knowledge, they 
include all compact E-cash systems providing this function. Then Table 5 presents the 
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solution to the efficiency problem caused by this tracing. And for achieving the comparable 
secure level, l=10, k=100, x=1024 (the meanings of the parameters are in Table 2 and Table 3). 

 
Table 5. Compact E-cash with double-spender’s coin-tracing 

 
Storage space [bit] Computation cost 

F1 F2 
[8] 

System 2 [31] Our scheme [8] 
System 2 [31] Our scheme [8] 

System 2 [31] Our scheme 

For 2n 
coins Withdrawal 36832 330400 8406 810 1048593 18 300 7 0 

For 1 
coin 

Payment 227328 7680 7836 778 42 17 0 36 0 

Deposit 227328 7680 7836 227 13 6 0 18 0 

F1: multi-based exponentiation   F2: bilinear pairing 

9. Conclusion 
Anonymity is good, but it could be abused for crimes or cause trouble when E-cash is lost. 

Complete tracing can solve this problem. However, it also threatens the honest user’s privacy. 
The reasonable solution is to separate different tracing functions provided by different entities 
and choose the available ones according to the circumstances. Practical tracing can achieve it. 
To achieve the practical and complete tracing, another serious problem must be solved, i.e., 
how to trace double-spender’s coins efficiently. For solving it, we propose the particular 
knowledge proof, and using it honestly keeps perfect zero-knowledge property, while using it 
dishonestly leaks the information of proven knowledge. Since it changes the inner 
construction of standard zero-knowledge proof, we provide the complete proofs of it. 
Consequently, the practical and complete tracing is also efficient. 

References 
[1] Y. Chen, J. S. Chou, H. M. Sun, and M. H. Cho, “A novel electronic cash system with 

trustee-based anonymity revocation from pairing,” Electronic Commerce Research and 
Applications. vol.10, no.6, pp. 673-682, 2011. Article (CrossRef Link) 

[2] Z. Tan, “An Off-line Electronic Cash Scheme Based on Proxy Blind Signature,” The Computer 
Journal, vol. 54, no. 4, pp. 505-512, 2011. Article (CrossRef Link) 

[3] D. Chaum, “Blind signatures for untraceable payments,” in Proc. of CRYPTO’82, pp. 199–203, 
1983. Article (CrossRef Link) 

[4] Pin-Chang Su and Chien-Hua Tsai, “New Proxy Blind Signcryption Scheme for Secure Multiple 
Digital Messages Transmission Based on Elliptic Curve Cryptography,” KSII Transactions on 
Internet and Information Systems, vol. 11, no. 11, pp. 5537-5555, 2017. Article (CrossRef Link) 

[5] Md. Abdullah Al Rahat Kutubi, Kazi Md. Rokibul Alam, Rafaf Tahsin, G. G. Md. Nawaz Ali, 
Peter Han Joo Chong and Yasuhiko Morimoto, “An Offline Electronic Payment System Based on 
an Untraceable Blind Signature Scheme,” KSII Transactions on Internet and Information Systems, 
vol. 11, no. 5, pp. 2628-2645, 2017. Article (CrossRef Link) 

[6] Zhen Zhao, Jie Chen, Yueyu Zhang and Lanjun Dang, “An Efficient Revocable Group Signature 
Scheme in Vehicular Ad Hoc Networks,” KSII Transactions on Internet and Information Systems, 
vol. 9, no. 10, pp. 4250-4267, 2015. Article (CrossRef Link) 

[7] Run Xie, Chunxiang Xu, Chanlian He and Xiaojun Zhang, “An Efficient Dynamic Group 
Signature with Non-frameability,” KSII Transactions on Internet and Information Systems, vol. 10, 
no. 5, pp. 2407-2426, 2016. Article (CrossRef Link) 

[8] J. Camenisch, S. Hohenberger, and A. Lysyanskaya, “Compact e-cash,” in Proc. of Advances in 
Cryptology– EUROCRYPT 2005, pp. 302-321, 2005. Article (CrossRef Link) 

https://doi.org/10.1016/j.elerap.2011.06.002
https://doi.org/10.1093/comjnl/bxq078
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.3837/tiis.2017.11.020
https://doi.org/10.3837/tiis.2017.05.018
https://doi.org/10.3837/tiis.2015.10.027
https://doi.org/10.3837/tiis.2016.05.025
https://doi.org/10.1007/11426639_18


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019                                         3753 

[9] S. von Solms and D. Naccache, “On blind signatures and perfect crimes,” Computers & Security, 
vol. 11, pp.581-583, 1992. Article (CrossRef Link) 

[10] E. Brickell, P. Gemmell, and D. Kravitz, “Trustee-based tracing extensions to anonymous cash and 
the making of anonymous change,” in Proc. of 6th annual ACM-SIAM symposium on Discrete 
algorithms, pp. 457-466 ,1995. Article (CrossRef Link) 

[11] M. Stadler, J. Piveteau, and J. Camenisch, “Fair blind signatures,” in Proc. of Advances in 
Cryptology Eurocrypt’95, pp. 209-219, 1995. Article (CrossRef Link) 

[12] A. Lysyanskaya and Z. Ramzan, “Group blind digital signatures: A scalable solution to electronic 
cash,” in Proc. of FC’98, pp. 184-197, 1998. Article (CrossRef Link) 

[13] G. Maitland and C. Boyd, “Fair electronic cash based on a group signature scheme,” Information 
and Communications Security, pp. 461-465, 2001. Article (CrossRef Link) 

[14] H. Oros and C. Popescu, “A Secure and Efficient Off-line Electronic Payment System for Wireless 
Networks,” Intl. J. of Computers, Comm. and Control, Suppl. Issue Vol. V, No. 4, pp. 551-557, 
2010. Article (CrossRef Link) 

[15] J. Zhang, L. Ma, and Y. Wang, “Fair E-Cash System without Trustees for Multiple Banks,” in Proc. 
of CISW 2007, pp. 585-587, 2007. Article (CrossRef Link) 

[16] S. Canard, C. Delerablée, A. Gouget, E. Hufschmitt, F. Laguillaumie, H. Sibert, J. Traoré, and D. 
Vergnaud, “Fair E-Cash: Be Compact, Spend Faster,” in Proc. of ISC 2009: Information Security, 
pp. 294-309, 2009. Article (CrossRef Link) 

[17] S. Canard and J. Traoré, “On fair e-cash systems based on group signature schemes,” in Proc. of 
ACISP2003, pp. 237-248, 2003. Article (CrossRef Link) 

[18] W. Qiu, K. Chen"A new offline privacy protecting e-cash system with revokable anonymity,” 
Information Security, pp.177, 2002. Article (CrossRef Link) 

[19] H. Wang, J. Cao, and Y. Zhang, “A flexible payment scheme and its role-based access control,” 
IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 3, pp. 425-436, 2005.  
Article (CrossRef Link) 

[20] J. Liu, P. Tsang, and D. Wong, “Recoverable and untraceable e-cash,” in Proc. of PKI, pp. 206-214, 
2005. Article (CrossRef Link) 

[21] M. Au, W. Susilo, and Y. Mu, “Practical compact e-cash,” in Proc. of the 12th Australasian 
conference on Information security and privacy 2007, pp. 431-445, 2007. Article (CrossRef Link) 

[22] M. Au, W. Susilo, and Y. Mu, “Practical anonymous divisible e-cash from bounded 
accumulators,” Financial Cryptography and Data Security, pp. 287-301, 2008.  
Article (CrossRef Link) 

[23] M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya, “Compact e-cash and simulatable 
VRFs revisited,” in Proc. of Pairing-Based Cryptography–Pairing 2009, pp. 114-131, 2009. 
Article (CrossRef Link) 

[24] S. Brands, “Untraceable off-line cash in wallet with observers,” in Proc. of CRYPTO’93, pp. 
302-318, 1993. Article (CrossRef Link) 

[25] S. Brands and C. v. W. e. Informatica, “An efficient off-line electronic cash system based on the 
representation problem,” CWI Technical Report CS-R9323, Citeseer, 1970.  
Article (CrossRef Link) 

[26] S. Canard and A. Gouget, “Divisible e-cash systems can be truly anonymous,” in Proc. of 
Advances in Cryptology-EUROCRYPT 2007, pp. 482-497, 2007. Article (CrossRef Link) 

[27] Z. Eslami and M. Talebi, “A new untraceable off-line electronic cash system,” Electronic 
Commerce Research and Applications, vol. 10, no. 1, pp. 59–66, 2011. Article (CrossRef Link) 

[28] Schoenmakers, B., “Security aspects of the E-cash™ payment system,” State of the Art in Applied 
Cryptography, pp. 338–352, 1998. Article (CrossRef Link) 

[29] W. S. Juang, “RO-cash: An efficient and practical recoverable pre-paid offline e-cash scheme 
using bilinear pairings,” Journal of Systems and Software, vol. 83, pp. 638-645, 2010.  
Article (CrossRef Link) 

[30] B. Lian, G. L. Chen and J. H. Li, “Provably secure E-cash system with practical and efficient 
complete tracing,” International Journal of Information Security, vol. 13, no. 3, pp. 271-289, Apr. 
2014. Article (CrossRef Link) 

https://doi.org/10.1016/0167-4048(92)90193-U
https://www.researchgate.net/publication/220779567_Trustee-based_Tracing_Extensions_to_Anonymous_Cash_and_the_Making_of_Anonymous_Change
https://doi.org/10.1007/3-540-49264-X_17
https://link.springer.com/chapter/10.1007/BFb0055483
https://doi.org/10.1007/3-540-45600-7_51
https://www.researchgate.net/publication/228643600_A_Secure_and_Efficient_Off-line_Electronic_Payment_System_for_Wireless_Networks
https://www.researchgate.net/publication/4308371_Fair_E-Cash_System_without_Trustees_for_Multiple_Banks
https://link.springer.com/chapter/10.1007%2F978-3-642-04474-8_24
https://link.springer.com/chapter/10.1007%2F3-540-45067-X_21
https://www.researchgate.net/publication/220905143_A_New_Offline_Privacy_Protecting_E-cash_System_with_Revokable_Anonymity
https://doi.org/10.1109/TKDE.2005.35
https://doi.org/10.1007/11533733_14
https://doi.org/10.1007/978-3-540-73458-1_31
https://doi.org/10.1007/978-3-540-85230-8_26
https://doi.org/10.1007/978-3-642-03298-1_9
https://link.springer.com/chapter/10.1007/3-540-48329-2_26
https://www.researchgate.net/publication/2606236_An_Efficient_Off-line_Electronic_Cash_System_Based_On_The_Representation_Problem
https://doi.org/10.1007/978-3-540-72540-4_28
https://doi.org/10.1016/j.elerap.2010.08.002
https://doi.org/10.1007/3-540-49248-8_16
https://doi.org/10.1016/j.jss.2009.11.006
https://doi.org/10.1007/s10207-014-0240-2


3754                                                                Bin Lian et al.: Compact E-Cash with Practical and Complete Tracing 

[31] M. Au, Q Wu, W Susilo, Y Mu, “Compact E-Cash from Bounded Accumulator,” in Proc. of 
CT-RSA’07. LNCS, vol. 4377, pp. 178-195, 2007. Article (CrossRef Link) 

[32] B. Lian, G. Chen, M. Ma, J. Li, “Periodic K-Times Anonymous Authentication with Efficient 
Revocation of Violator's Credential,” IEEE Transactions on Information, Forensics and Security, 
VOL. 10, NO. 3, pp. 543-557. 2015. Article (CrossRef Link) 

[33] E. Fujisaki and T. Okamoto, “Statistical zero knowledge protocols to prove modular polynomial 
relations,” in Proc. of Advances in Cryptology—CRYPTO'97, pp. 16-30, 1997.  
Article (CrossRef Link) 

[34] D. Boneh, “The decision diffie-hellman problem,” Algorithmic Number Theory, pp. 48-63, 1998. 
Article (CrossRef Link) 

[35] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik, “A practical and provably secure 
coalition-resistant group signature scheme,” in Proc. of Advances in Cryptology—CRYPTO 2000, 
pp. 255-270, 2000. Article (CrossRef Link) 

[36] J. Camenisch, “Group signature schemes and payment systems based on the discrete logarithm 
problem,” PhD thesis, vol. 2 of ETH Series in Information Security an Cryptography, 
Hartung-Gorre Verlag, Konstanz. ISBN 3-89649-286-1, 1998. Article (CrossRef Link) 

[37] Y. Dodis and A. Yampolskiy, “A Verifiable Random Function With Short Proofs and Keys,” in 
Proc. of Public Key Cryptography, vol. 3386 of LNCS, pp. 416-431, 2005.  
Article (CrossRef Link) 

[38] J. Camenisch and Anna Lysyanskaya, “A signature scheme with efficient protocols,” in Proc. of 
Security in Communication Networks’02, vol. 2576 of LNCS, pages 268–289. 2002.  
Article (CrossRef Link) 

[39] J. Camenisch and M. Michels, “Proving in zero-knowledge that a number is the product of two safe 
primes,” in Proc. of Advances in Cryptology—EUROCRYPT’99, pp. 107-122, 1999.  
Article (CrossRef Link) 

[40] C.P. Schnorr, “Efficient Signature Generation by Smart Cards,” Journal of Cryptology, vol 4, pp. 
161-174, 1991. Article (CrossRef Link) 

[41] B. Lian, GL. Chen, JH. Li, “ A Provably Secure and Practical Fair E-cash Scheme,” in Proc. of 
2010 IEEE International Conference on Information Theory and Information Security, 2010. 
Article (CrossRef Link) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://link.springer.com/chapter/10.1007/11967668_12
https://ieeexplore.ieee.org/document/6999947
https://doi.org/10.1007/BFb0052225
https://doi.org/10.1007/BFb0054851
https://link.springer.com/chapter/10.1007%2F3-540-44598-6_16
https://www.researchgate.net/publication/243713071_Group_signature_schemes_and_payment_systems_based_on_the_discrete_logarithm_problem
https://link.springer.com/chapter/10.1007%2F978-3-540-30580-4_28
https://link.springer.com/chapter/10.1007%2F3-540-36413-7_20
https://link.springer.com/chapter/10.1007%2F3-540-48910-X_8?LI=true
https://doi.org/10.1007/BF00196725
https://doi.org/10.1109/ICITIS.2010.5689448


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019                                         3755 

 
 

Bin Lian received the M.S. degree in cryptography from Southwest Jiaotong University in 
2005 and the Ph.D. degree in cryptography from Shanghai Jiao Tong University in 2015. He 
is with the Ningbo Institute of Technology, Zhejiang University, Ningbo, China. His research 
interests include cryptography, cryptographic protocol and technology of network security. 

 

Gongliang Chen received his B.S. in Peking University, and M.S. degree in Chinese 
Academy of Science. In 1993, he received his Ph.D. degree in Université de Saint Etienne, 
France. He is also a visiting scholar of Université Paris VI, France. He is currently a professor 
at the School of Information Security Engineering, Shanghai Jiao Tong University, Shanghai. 
His main research area includes cryptographic theory and technology of network security.  

 

Jialin Cui received the M.S. degree from Zhejiang University in 2005. He is with the 
Ningbo Institute of Technology, Zhejiang University, Ningbo, China. He is currently 
pursuing the Ph.D. degree with Ningbo University. His research interests include 
cryptography, security protocol and cryptographic applications. 

 

Dake He received his M.S. degree in Xidian University, Xian in 1981. He is a professor and 
doctoral supervisor at Southwest Jiaotong University, Chengdu. He is also the director of 
national high performance computing center (Chengdu). His research area includes 
cryptography, communications system security, security engineering of information system, 
parallel computing and applied mathematics. 


