DOI QR코드

DOI QR Code

A Study on Issue Tracking on Multi-cultural Studies Using Topic Modeling

토픽 모델링을 활용한 다문화 연구의 이슈 추적 연구

  • 박종도 (인천대학교 문헌정보학과, 인천대학교 사회과학연구원)
  • Received : 2019.07.16
  • Accepted : 2019.08.20
  • Published : 2019.08.31

Abstract

The goal of this study is to analyze topics discussed in academic papers on multiculture in Korea to figure out research trends in the field. In order to do topic analysis, LDA (Latent Dirichlet Allocation)-based topic modeling methods are employed. Through the analysis, it is possible to track topic changes in the field and it is found that topics related to 'social integration' and 'multicultural education in schools' are hot topics, and topics related to 'cultural identity and nationalism' are cold topics among top five topics in the field.

본 논문은 국내 다문화 관련 분야의 연구동향을 규명하기 위하여 다문화와 관련한 국내 학술 문헌을 수집하여 LDA (Latent Dirichlet Allocation) 기반의 토픽 모델링을 통해 토픽을 분석하였다. 이를 통해 국내 다문화 관련 연구에서의 중심 연구 토픽을 시기별로 추적하여 그 변화의 양상을 관찰하였고, 그 결과 핫 토픽으로는 '다문화 사회통합'과 '학교 다문화 교육'이 관찰되었으며 콜드 토픽으로는 '문화정체성과 민족주의' 관련 토픽이 관찰되었다.

Keywords

References

  1. Kang, Beomil, Song, Min and Jho, Whasun. 2013. "A Study on Opinion Mining of Newspaper Texts based on Topic Modeling." Journal of the Korean Society for Library and Information Science, 47(4): 315-334. https://doi.org/10.4275/KSLIS.2013.47.4.315
  2. National Archives of Korea. 2019. "Korea of Record: Multicultural Society." [online] [cited 2019. 8. 4.]
  3. Ahn, Sung-Joo and Yang, Jung-Jin. 2018. "A Study on Topic Models using LDA and Word2Vec in Bioinformatics." Proceedings of Korea Computer Congress 2018, 2065-2067.
  4. Kim, Sehyun. 2018. "A Study of Korea's Multicultural Research Trends Using Unstructured Data Analysis." Korea Journal of Population Studies, 41(1): 1-27.
  5. Moon, Hwa-Jin. 2019. "Trends in Research on Multicultural Education of University Students in Korea." The Journal of Multicultural Society, 12(2): 181-215. https://doi.org/10.14431/jms.2019.06.12.2.181
  6. Park, Ja-Hyun and Song, Min. 2013. "A Study on the Research Trends in Library & Information Science in Korea using Topic Modeling." Journal of the Korean Society for Information Management, 30(1): 7-32. https://doi.org/10.3743/KOSIM.2013.30.1.007
  7. Park, JunHyeong and Oh, Hyo-Jung. 2017. "Comparison of Topic Modeling Methods for Analyzing Research Trends of Archives Management in Korea: focused on LDA and HDP." Journal of Korean Library and Information Science Society, 48(4): 235-258. https://doi.org/10.16981/kliss.48.4.201712.235
  8. Bae, Jung-hwan, Han, Nam-gi and Song, Min. 2014. "Twitter Issue Tracking System by Topic Modeling Techniques." Proceedings of the Korea Intelligent Information Systems Society, 305-312.
  9. Eum, Soomin, Lee, Sugil, Meng, Xiangyu, Cho, Sung Won and Lee, Chulung. 2019. "Analysis of Research Trends of Wireless Power Transfer System for Locomotives Using Topic Modeling Based on LDA Algorithm." Journal of the Korean Institute of Industrial Engineers, 45(4): 284-301. https://doi.org/10.7232/JKIIE.2019.45.4.284
  10. Lee, K. S., Lee, Injoo and Lee, Young K. 2018. "Research Trends Analysis on Virtual Reality in Tourism using LDA(Latent Dirichlet Allocation) topic modeling." Proceedings of the Korea Academic Society of Tourism and Leisure, 425-432.
  11. Lee, Sang Yeon and Lee, Keon Myung. 2014. "Trend Extraction using Topic Model Based on Reply Graph." Proceedings of the Korean Institute of Intelligent Systems Conference, 24(2): 99-100.
  12. Jang, Eun-Young and Lee, Jeong-Ah. 2018. "Trends in multicultural studies published in Korea: An analysis of the studies focusing on bilingualism and/or bilingual education." Journal of Education & Culture, 24(3): 501-521. https://doi.org/10.24159/joec.2018.24.3.501
  13. Jang, Im Sook, Chang, Durk-Hyun and Lee, Soosang. 2011. "The Knowledge Structure of Multicultural Research Papers in Korea." Journal of Korean Library and Information Science Society, 42(4): 353-374. https://doi.org/10.16981/kliss.42.4.201112.353
  14. Jin, Seol A and Song, Min. 2016. "Topic Modeling based Interdisciplinarity Measurement in the Informatics Related Journals." Journal of the Korean Society for Information Management, 33(1): 7-32. https://doi.org/10.3743/KOSIM.2016.33.1.007
  15. Blei, David M., Ng, Andrew Y. and Jordan, Michael I. 2003. "Latent Dirichlet Allocation." Journal of Machine Learning Research, 3: 993-1022.
  16. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K. and Harshman, R. 1990. "Indexing by latent semantic analysis." Journal of the American society for information science, 41(6): 391-407. https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
  17. Hofmann, T. 1999. Probabilistic latent semantic analysis. In Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence (UAI'99), Kathryn B. Laskey and Henri Prade (Eds.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 289-296.
  18. Liu, Z., Zhang, Y., Chang, E. Y. and Sun, M. 2011. Plda+: Parallel latent dirichlet allocation with data placement and pipeline processing. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3): 26.
  19. Wang, C. and Blei, D. M. 2013. "Variational inference in nonconjugate models." Journal of Machine Learning Research, 14(1): 1005-1031.