DOI QR코드

DOI QR Code

Element Dispersion and Wallrock Alteration Analysis Using Portable XRF and SWIR in the Samgwang Au Deposit

휴대용 XRF와 단파장적외선 분광분석을 이용한 삼광 금광상의 원소분산 및 모암변질 분석

  • Kim, Junkyum (Department of Geoenviromental Sciences, Kongju National University) ;
  • Shin, Dongbok (Department of Geoenviromental Sciences, Kongju National University) ;
  • Yoo, Bongchul (Convergence Research Center for Development of Mineral Resources, Korea Institute of Geoscience and Mineral Resources) ;
  • Im, Heonkyung (Department of Geoenviromental Sciences, Kongju National University) ;
  • Kim, Ilkyu (Department of Geoenviromental Sciences, Kongju National University)
  • 김준겸 (공주대학교 지질환경과학과) ;
  • 신동복 (공주대학교 지질환경과학과) ;
  • 유봉철 (한국지질자원연구원 DMR융합연구단) ;
  • 임헌경 (공주대학교 지질환경과학과) ;
  • 김일규 (공주대학교 지질환경과학과)
  • Received : 2019.07.29
  • Accepted : 2019.08.28
  • Published : 2019.08.28

Abstract

Using portable XRF and SWIR analyzer, the characteristics of element dispersion and wallrock alterations induced by interaction between hydrothermal fluids and host rocks were investigated and ore exploration factors were estimated for the orogenic-type Samgwang Au deposits. On this purpose, in-situ measurements were conducted for 804 spots at regular intervals with a total of 4,824 times for host rocks, consisting of schist and gneiss, and altered wallrocks contacted with quartz veins in the Bonhang adit of the deposit, and the results were compared with quantitative data obtained by XRF and ICP analysis. The regression coefficients are 0.88 for major elements and 0.56 for trace elements, excluding V. For polished rock slabs, better results came out for major elements, 0.97 and for trace elements, 0.65. In altered wallrocks contacted with quartz veins, elements such as Fe, Zn, and Rb exhibit positive correlations with As in concentrations, while V forms a negative trend. Contour maps demonstrate that As, Zn, Rb, Fe, Ti, Cr, and Ni are enriched together near quartz veins, showing similar elemental behaviors. In-situ analysis using portable SWIR analyzer represents that schist and gneiss contain mica, illite, chlorite, sericite, amphibole, and epidote, while illite, sericite, gypsum, and mica are present in the altered rocks contacted with quartz veins. In contour maps, chlorite occurs mostly in host rocks, while sericite is concentrated near quartz veins. These results are similar to those of previous studies for element dispersion and hydrothermal alteration, and support the possibility for application of in-situ analysis on the exploration of orogenic gold deposit.

휴대용 X선 형광분석기(XRF)와 단파장 적외선 분광분석기(SWIR)를 이용하여 조산형 금광상인 삼광광상의 열수유체와 모암의 반응에 의한 원소분산과 모암변질 양상을 파악하고 이를 통해 광상탐사인자를 추정하고자 하였다. 이를 위해 편암 및 편마암, 그리고 석영맥과의 접촉변질대 등으로 구성된 삼광광상 본항갱에서 일정간격으로 804개 지점에 대해 총 4,824회 측정하였고, 이 결과를 XRF 및 ICP 정량분석결과와 비교하였다. 회귀분석결과 현장측정 주원소 결정계수는 0.88, V을 제외한 미량원소는 0.56를 보인다. 일부 시료를 연마한 후 측정한 결과 주원소 결정계수는 0.97, 미량원소는 0.65로서 현장측정결과보다 높게 나타난다. 석영맥 변질대 분석결과 As는 Fe, Zn, Rb와 양의 상관관계를 보이며, V과는 음의 관계를 나타낸다. 컨투어맵 분석결과에서 As는 Zn, Rb, Fe, Ti, Cr, Ni 등과 함께 석영맥 부근에서 함량이 증가하는 것으로 나타나 상호 유사한 경향성을 보인다. 휴대용 SWIR을 이용한 현장측정결과 편암 및 편마암에는 운모, 일라이트, 녹니석, 견운모, 각섬석, 녹염석 등의 조합을 보이고, 석영맥과 접한 변질대에서는 일라이트, 견운모, 석고 및 운모 등이 검출된다. 컨투어맵 작성결과 녹니석은 대부분 모암에서 산출되는 반면, 견운모는 석영맥 부근에서 높게 나타난다. 휴대용 분석기기를 이용한 이러한 결과는 기존의 원소분산 및 열수변질 연구결과와 유사하며 조산형 금광상 탐사에 효과적으로 사용가능할 것으로 여겨진다.

Keywords

References

  1. Arehart, G.B. and Chryssoulis, S.L. and Kesler, S.E. (1993) Gold and arsenic in iron sulfides from sediment-hosted disseminated gold deposits; Implications for depositional processes. Econ. Geol., v.88, p.171-185. https://doi.org/10.2113/gsecongeo.88.1.171
  2. Bierlein, F.P., Arne, D.C., McKnight, S., Lu, J., Reeves, S., Besanko, J., Marek, J. and Cooke, D. (2000) Wall-rock petrology and geochemistry in alteration haloes associated with mesothermal gold mineralization, Central Victoria, Australia. Econ. Geol., v.95, p.283-311. https://doi.org/10.2113/gsecongeo.95.2.283
  3. Bierlein, F.P., Hughes, M., Dunphy, J., McKnight, S., Reynolds, P. and Waldron, H. (2001) Tectonic and economic implicaions of trace element, $^{40}Ar/^{39}Ar$ and Sm-Nd data from mafic dykes associated with orogenic gold mineralisation in central Victoria, Australia. Lithos. v.58, p.1-31. https://doi.org/10.1016/S0024-4937(01)00050-0
  4. Cathelineau, M., Boiron, M.C., Holliger, P., Marion, P. and Denis, M. (1989) Gold in arsenopyrites: Crystal chemistry, location and state, physical and chemical conditions of deposition. 328-341 in: The Geology of Gold Deposits: The Perspective in 1988, Econ. Geol. Monograph 6, Econ. Geol. Publishing Co., New Haven, 667p.
  5. Chang, Z. and Yang, Z. (2012) Evaluation of interintrument variations among short wavelength infrared (SWIR) devices. Econ. Geol., v.107, p.1479-1488. https://doi.org/10.2113/econgeo.107.7.1479
  6. Choi, H.I., Kim, D.S. and Seo, H.G. (1988) Stratigraphy, depositional environment and basin evolution of the Daedong strata in the Chungnam Coalfield. Korea Inst. Energy Resources, KR-87-(B)-3, 97p.
  7. Choi, S.G., Kwon, S.T., Ree, J.H., So, C.S. and Pak, S.J. (2005) Origin of Mesozoic gold mineralization in South Korea. Isl. Arc, v.14, p.102-114. https://doi.org/10.1111/j.1440-1738.2005.00459.x
  8. Choi, S.G., Park, S.J., Kim, S.W., Kim, C.S. and Oh, C.W. (2006) Mesozoic gold-silver mineralization in South Korea: metallogenic provinces reestimated to the geodynamic setting. Econ. Environ. Geol., v.39, p.567-581.
  9. Cline, J.S., Hofstra, A.H., Muntean, J.L., Tosdal, R.M. and Hickey, K. (2005) Carlin-type deposits in Nevada: Critical geological characteristics and viable models. Econ. Geol. 100th Anni. Vol., p.451-484.
  10. Deer, W.A., Howie, R.A. and Zussman, J. (1992) An introduction to the rock- forming minerals. Longman Scientific & Technical, New York, 720p.
  11. Evans, A.M. (1992) Ore geology and industrial minerals. 3rd (ed.) Blackwell Science. 389p.
  12. Gazley, M.F., Duclaux, G., Fisher, L.A., de Beer, S., Smith, P., Taylor, M., Swanson, R., Hough, R.M. and Cleverley, J.S. (2011) 3D visualisation of portable X-ray fluorescence data to improve geological understanding and predict metallurgical performance at Plutonic Gold Mine, Western Australia. Applied Earth Sci., v.120, p.88-96. https://doi.org/10.1179/1743275812Y.0000000002
  13. Gazley, M.F. and Fisher, L.A. (2014) A review of the reliability and validity of portable X-ray fluorescence spectrometry (pXRF) data, Monograph 23, 2nd (ed.) Mineral Resource and Ore Reserve Estimation. Australasian Inst. Mining Metal., p.69-82.
  14. Goldfarb, R.J., Hart, C., Davis, G. and Groves, D. (2007) East Asian gold: deciphering the anomaly of Phanerozoic gold in Precambrian cratons. Econ. Geol., v.102, p.341-345. https://doi.org/10.2113/gsecongeo.102.3.341
  15. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G. and Robert, F. (1998) Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev., v.13, p.7-27. https://doi.org/10.1016/S0169-1368(97)00012-7
  16. Harraden, C.L., Mcnulty, B.A., Gregory, M.J. and Lang, J.R. (2013) Shortwave infrared spectral analysis of hydrothermal alteration associated with the Pebble porphyry copper-gold-molybdenum deposit, Iliamna, Alaska. Econ. Geol., v.108, p.483-494. https://doi.org/10.2113/econgeo.108.3.483
  17. Herrman, W., Blake, M., Doyle, M., Huston, D., Kamprad, J., Merry, N. and Pontual, S. (2001) Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland. Econ. Geol., v.96, p.939-955. https://doi.org/10.2113/gsecongeo.96.5.939
  18. Kang, P.J. and Im, J.H. (1974) Explanatory text of the geological map of Gwangjeong sheet. Geol. Mineral. Inst. Korea, 13p.
  19. Kim, C.S., Kim, Y.H., Choi, S.G., Ko, K.B. and Han, K.S. (2017) Mineral identification and field apllication by short wave infrared (SWIR) spectroscopy. Econ. Environ. Geol., v.50, p.1-14. https://doi.org/10.9719/EEG.2017.50.1.1
  20. Kim, S.W., Yoo, H.S. and Woo, Y.G. (1977) Geological map of Korea : Gongju sheet. Korea Res. Inst. Geosci. Mineral Res.. 29p.
  21. Lang, J.R., Baker, T., Hart, C.J.R and Mortensen, J.K. (2000) An exploration model for intrusion-related gold systems. Econ. Geol., v.40, p.6-15.
  22. Large, R.R., Bull, S.W. and Maslennikov, V.V. (2011) A carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits. Econ. Geol., v.106, p.331-358. https://doi.org/10.2113/econgeo.106.3.331
  23. Lee, H.K., Yoo, B.C., Hong, D.P. and Kim, K.W. (1995) Structural constraints on gold-silver-bearing quartz mineralization in strike-slip fault system, Samkwang mine, Korea. Econ. Environ. Geol., v.28, p.579-585.
  24. Lee, H.K., Yoo, B.C., Kim, K.W. and Choi, S.G. (1998) Mode of occurrence and chemical compostion of electrums from the Samkwang gold-silver deposits, Korea. Korean Soc. Mineral Energy Res. Eng., v.35, p.8-18.
  25. Lee, J.Y., Yun, H.S. and Hong, S.S. (2011) Geology of the Korean Peninsula based on the 1/1,000,000 tectonic map. Korea Inst. Geosci. Mineral. Res., 138p.
  26. Lee, M.T. (2018) Trace element analysis of arsenopyrite using LA-ICP -MS and its genetic implication for the Samgwang Au-Ag deposit. MSc. thesis, Kongju Nat. Univ., Kongju, Korea, 61p.
  27. Merry, N. and Ponual, S. (1996) New techniques for alteration mapping in Victoria: A case study from Fostervile gold mine. Australian Inst. Geosci. Bull., v.24, p.91-95.
  28. Park, G.S., Park, J.W. and Heo, C.H. (2018) Application of pXRF as a tool for exploring chromitite deposits in Kalaymyo ophiolite Myanmar. Abst. Vol. 2018 Fall Joint Conf. Geol. Sci., p.67.
  29. Pasava, J., Frimmel, H., Vymazalov?, A., Dobes, P., Jukov, A.V. and Koneev R.I. (2013) A two-stage evolution model for the Amantaytau orogenic-type gold deposit in Uzbekistan. Mineral. Dep., v.45, p.825-840.
  30. Suh, H.G., Kim, D.S., Park, S.H., Im, S.B., Cho, M.J., Bae, D.J., Lee, C.B., Lee, D.Y., Yoo, H.S., Park, J.S. and Jang, Y.H. (1980) Coal resources investigation report and geologic map (1:10,000), South Chungcheong coalfield province(1) in Seongju district. 2, Korea Inst. Energy Res., 42p.
  31. Thompson, A.J.B., Hauff, P.L. and Robitaille, A.J. (1999) Alteration mapping in exploration: Application of short-wave infrared (SWIR) spectroscopy. Econ. Geol., v.39, p.16-27.
  32. Williams, P.J., Barton, M.D., Johnson, D.A., Fontbote, L., De Haller, A., Mark, G. and Oliver, N.H.S. (2005) Iron oxide copper gold deposits: geology, space-time relationships and possible modes of origin. Econ. Geol. 100th Anni. Vol., p.371-405.
  33. Yang, K., Huntington, J.F., Browne, P.R.L. and Ma, C. (2000) An infrared spectral reflectance study of hydrothermal alteration minerals from the Te Mihi sector of the Wairakei geothermal system, New Zealand. Geothermics, v.29, p.377-392. https://doi.org/10.1016/S0375-6505(00)00004-3
  34. Yang, K., Huntington, J.F. and Scott, K.M. (1998) Spectral characterization of the hydrothermal alteration at Hishikari, Japan. Water-Rock Interaction, v.9, p.587-590.
  35. Yoo, B.C., Lee, G.J., Lee, J.K., Ji, E.K. and Lee. H.K. (2009) Element dispersion and wallrock alteration from Samgwang deposit. Econ. Environ. Geol, v.42, p.177-193.
  36. Yoo, B.C., Lee, H.K. and Choi, S.G. (2002) Stable isotope, fluid inclusion and mineralogical studies of the Samkwang gold-silver deposits, Republic of Korea. Econ. Environ. Geol, v.35, p.299-316.
  37. Yoo, B.C., Lee, H.K. and White, N.C. (2010) Mineralogical, fluid inclusion, and stable isotope constraints on mechanisms of ore deposition at the Samgwang mine (Republic of Korea)-a mesothermal, vein - hosted gold-silver deposit. Mineral. Dep., v.45, p.161-187. https://doi.org/10.1007/s00126-009-0268-9