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단일 클래스 분류와 특징 선택에 기반한 향상된 이상 감지

조현우
대구대학교 신소재에너지공학과

Abstract  Fault detection during production processes is one of the required operational tasks to run 
production processes both safely and consistently. Unexpected operational events or undetected process
faults can have a serious impact on the production systems and subsequently on the final products' 
quality. In addition, such situations may lead to malfunctions or breakdowns of production processes. 
To reliably detect such abnormalities, a new one-class classification-based detection scheme has 
recently been developed The proposed method consists of four steps:1) noise filtering, 2) feature 
selection, 3) nonlinear representation and 4) outlier detection. The performance of the proposed scheme
was demonstrated using the multivariate data obtained from a simulation process. The results have 
shown that the proposed method produced reliable monitoring results and outperforms any existing 
methods with an average improvement of 25.4%. The use of proper feature selection in the proposed 
framework yielded better detection performance.

요  약  생산 공정에서 발생되는 공정 이상을 적시에 감지하는 것은 생산 공정의 안전하고 일관된 조업 및 운영에 필수적
인 요소 중 하나로서 반드시 필요하다. 예측되지 못하거나 적절하게 감지되지 못한 공정 이상은 전체 생산 공정과 공정에
서 생산되는 최종 제품의 품질에 심각한 영향을 줄 수 있기 때문이다. 또한 이러한 상황은 공정 기능 불량과 고장으로 
이어지게 된다. 이러한 공정 이상을 신뢰성 있게 적시에 검출하기 위해 본 연구에서는 새로운 단일 클래스 분류에 기반한
공정 이상 감지 기법을 제안한다. 본 연구의 제안된 방법은 잡음 필터링, 특징 선택, 비선형 표현 및 특이치 검출의 네
단계로 구성된다. 본 연구에서는 시뮬레이션 공정의 측정치를 활용하여 제안된 방법의 성능을 평가하였다. 그 결과 제안
된 공정 이상 탐지 기법이 신뢰할 수 있는 모니터링 결과를 산출하였으며 기존 비교 대상 방법들보다 평균 25.4% 향상된
성능을 보여 주었다. 또한 적합한 특징 선택을 통하여 보다 향상된 이상 감지 성능을 얻을 수 있었다.
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1. Introduction

Unexpected events such as breakdowns and 
malfunctions in a production system have a 
critical impact on process operation and the 

quality of final products. Detection of faults or 
outlier is one of the operational tasks needed to 
maintain a process safely. For this purpose, there 
has been also much interest in nonlinear 
statistical methods such as support vector 



Improved Fault Detection Based on One-Class Classification and Feature Selection

217

machines (SVM)[1]. Similar to SVM, other 
kernel-based nonlinear techniques have been 
also developed: kernel partial least squares 
(KPLS), kernel principal component analysis 
(KPCA) and kernel Fisher discriminant analysis 
(KFDA)]. They have been applied to many 
practical issues of classification, detection, 
prediction, and so on[2-4].

Recently, one-class classification approaches 
to fault detection have been studied, which differ 
from conventional classification based approach 
in the way how a one-class classifier is 
trained[5]: it is trained by normal data or target 
data only and never considers abnormal or fault 
data. Such a characteristic is quite useful 
because in most cases one of classes (i.e., fault 
data) is under-sampled relatively. Measurements 
on normal operating conditions of a process are 
very cheap and easy to obtain. On the contrary, 
it is very expensive and time-consuming, though 
not impossible, to obtain measurements on all 
faulty situations. Support vector data description 
(SVDD), as one of one-class classification 
techniques, provides a compact description of 
target data[5]. SVDD seeks to represent original 
data in a spherical minimal-volume domain 
enclosing target points of the datasets. 

This work develops a new SVDD-based 
one-class classification method for fault 
detection. It also include additional steps of 
noise filtering, feature selection, and nonlinear 
representation. The noise filtering is to remove 
from target data unwanted variation or noises of 
data. Then, feature selection step is performed to 
select important variables. The exclusion of 
redundant variables from original data may yield 
better results with simpler models. Nonlinear 
techniques also can be used to extract nonlinear 
patterns of data. Compared to linear techniques, 
nonlinear one can provide an efficient 
lower-dimensional representation of data. 

The first objective of this paper is to compare 
the proposed method and existing detection 

methods. Based on simulation data of a test 
process detection results of the proposed method 
are compared with those of four frequently used 
methods. The second objective is to evaluate the 
advantage or importance of feature selection. 
The proposed method is tested by using different 
feature selection methods.

2. Methods

Fig. 1 shows an overall picture of the proposed 
method. It includes four steps, namely, noise 
filtering, feature selection, nonlinear representation, 
and fault detection. An orthogonal filter-based 
preprocessing is first performed. It can remove 
unwanted variation of data. Then, feature 
selection step is performed to select important 
variables that contribute to the separation 
between normal and abnormal data. The next 
step is to extract nonlinear patterns of data using 
one of nonlinear representation techniques. They 
provide an efficient representation of original. 
Finally, SVDD-based detection model is 
constructed to detect a fault. Such an empirical 
model is obtained by determining optimal 
decision boundary, against which future 
operations can be referenced or monitored. 

DOSC-based Noise Filtering

SVM-RFE-based Feature Selection

KFDA-based Nonlinear Representation

SVDD-based Outlier Detection

Auto-scaled Original Data

Preprocessed Data

Selected Features

Optimal Representation

Empirical Detection Model

Decision Boundary

DOSC-based Noise Filtering

SVM-RFE-based Feature Selection

KFDA-based Nonlinear Representation

SVDD-based Outlier Detection

Auto-scaled Original Data

Preprocessed Data

Selected Features

Optimal Representation

Empirical Detection Model

Decision Boundary

Fig. 1. Overall framework
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As one of pre-processing methods, orthogonal 
filtering’s goal is to get rid of systematic variation 
from independent variables X that is unrelated to 
response variables Y[6]. X’s largest variation 
having no correlation with Y must be removed 
from X. In this work OSC is modified so that it 
functions as noise filtering for a detection of 
outliers. The Y matrix includes information about 
class memberships so that each column of the Y 
has binary values of zero or one. The first task 
determines the first principal component scores 
of the data. These scores are orthogonalized to Y 
yielding correction vectors and PLS weight 
vectors. Then scores are updated by processing 
the correction vectors, which is also orthogonalized 
to Y. Entire steps are repeated until scores have 
converged, and correction vectors are located 
towards the vectors orthogonal to Y. As a result, 
a loading vector can be calculated producing 
residuals, and in such a way the next 
components can be obtained.

Support vector machines (SVM) feature 
selection method combined with a recursive 
feature elimination (RFE) procedure performs 
sensitivity analysis for an appropriately defined 
cost function[7]. In the linear kernel case, for 
example, let us define a cost function 
  ∥∥ Then the least sensitive feature 
with the minimum weight is eliminated first. This 
eliminated feature becomes ranking n. Then the 
SVM classification model is re-trained without 
the eliminated feature. The next step is to 
remove the feature having minimal magnitude of 
weights. The eliminated feature becomes ranking 
n-1 at this time. By repeating this process until 
no feature is left, one can rank all the features. 
Given training instances    with class 

labels   , initialize the subset of 
features        and r=[]. For general 
kernel cases, let us define a cost function 
  (1)

where e is an l dimensional vector of ones, 
   , and  is a Lagrange 
multiplier. It is assumed that there are no 
changes in α in order to get the change in J 
caused by removed feature i.  
    (2)

where (-i) represents that the feature i has been 
removed. The sensitivity function is given by
  

 
(3)

The SVM-RFE algorithm for general kernels 
can be implemented by repeating (i) through (v) 
until s becomes an empty array as follows: 

(i) Construct new instances 
(ii) Train SVM(X,y) to obtain α 
(iii) Compute the ranking criterion
      

(iv) Find the feature f such that 
   arg min

(v) Update r and remove the feature f from 
s:    
When a linear kernel is used, the same 

procedure is repeated except (iii) (where one 
computes a gradient  ∇ ∑∈). 

The objective of nonlinear kernel discriminant 
analysis is to obtain certain directions, along 
which hidden groups of data are separated as 
clearly as possible. These directions can be 
obtained by maximizing between-class scatter  

while minimizing total scatter . Similar to 
linear FDA, it is done by maximizing the Fisher 
criterion[4]:

 






 ≠. (4)

The optimal discriminant vectors are described 
as a linear combination of the data in feature 
space. Thus there exist coefficients bi such that




  (5)

where       and    
Let the elements of K, a kernel matrix, be given 
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as   ≺  ≻  in which 
≺≻ indicates the dot product and   
is a kernel function. A kernel function of  
is used to avoid executing the nonlinear mapping 
  and dot products in the feature space[4]. In 
summary, KFDA first performs a nonlinear 
mapping   to project an input vector to a 
feature space. Then linear FDA is performed in 
feature space, giving a lower dimensional KFDA 
space based representation. In this work, instead 
of KPCA, KFDA is employed for representing 
nonlinear data because it provides better 
discrimination between normal and abnormal 
data.

SVDD is one of one-class classification 
methods. One-class classification methods can 
be divided into density estimation, reconstruction, 
and boundary methods. As one of boundary 
methods, SVDD seeks to envelop data within a 
feature space with the volume as small as 
possible. When a suitable kernel is introduced, 
this model can be more powerful and may give 
reliable results. Let us consider a SVDD model 
with a hyper-sphere boundary around data. Here 
the sphere is characterized by center μ and the 
radius R. The problem of SVDD is to determine 
μ and R that has minimal-volume hyper-sphere 
containing all samples xi, i=1, 2…I. Here the error 
function is    with ∥ ∥ ≤  . 
When there are some abnormal samples, a large 
sphere can be obtained but it will not represent 
the data well. Slack variables ≥   are 
introduced to allow for some samples outside the 
sphere.

The distance between xi and μ is not smaller 
than the R2 so that larger distances are penalized. 
The minimization problem is expressed in the 
following:

  


 (6)
where the parameter C indicates trade-off 
between the sphere’s volume and the number of 

samples outside it. This should be minimized 
under the following constraints[5]:

∥ ∥ ≤    ≥  (7)
By incorporating Eq. 7 into Eq. 6, one can 

construct the Lagrangian function:

  




 


 


∥∥  ∥∥




(8)
with the Lagrange multipliers  ≥   and 

 ≥  . Here, L is minimized with respect to R, 
μ, ξi and maximized with respect to  and  . 
Equation (8) can be expressed as

  


 ∙ 


 ∙ (9)
with ≤ ≤ . Maximization of Eq.9 yields 

a set of  . When a sample  satisfies the 

inequality ∥ ∥ ≤   , the constraint is 
satisfied and αi = 0. Thus only samples xi with 
   are needed in SVDD, which are called 
support vectors. By using kernel trick the SVDD 
problem of Eq. 9 can be expressed as[5]:

 


  


 (10)

with constraints ≤ ≤   and   . 
The use of different kernel functions result in 
different boundaries in SVDD.

3. Results

The performance of the proposed scheme is 
demonstrated using simulated data. A test 
process is a simulation of an actual industrial 
process which has been widely used for 
optimization strategies, monitoring, and 
diagnosis[8]. It has 22 continuous process 
variables, 12 manipulated variables, and 19 
composition data. Training data and test data 
sets for each of faults include Gaussian noise. A 
variable plot for the fault F3 are displayed in Fig. 
2, where Y axis represents measurement values. 
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Fluctuations of measurement variables can be 
seen after around 480 sampling time. Table 1 
lists a total of 10 faults of the process considered 
in the case study. In this work the proposed 
framework was implemented in Matlab 
environment. 

Fault Description
F1 A/C feed ratio, B composition constant
F2 B composition, A/C ratio constant
F3 D feed temperature
F4 Reactor cooling water inlet temperature
F8 A/B/C feed composition
F9 D feed temperature
F10 C feed temperature
F13 Reaction kinetics
F14 Reactor cooling water valve
F21 Fixed valve position

Table 1. List of process faults of case study

We first performed orthogonal filtering on 
training data and then test data. It is interesting 
to find the effect of using the orthogonal filtering 
and its number of components in the proposed 
framework. For this comparison purpose, three 
regression models are constructed using 
dependent variables as class memberships. These 
models are classical PLS algorithms applied to 
classification problems, which is often called 
discriminant PLS (DPLS). 

0 100 200 300 400 500 600 700 800 900 1000
8.5

9

9.5

10

Sampling Time

V
4

Fig. 2. Variable plot for F3

Table 2 summarizes the modeling results of 
the three DPLS models. The three DPLS models 
are built based on training data to predict class 
memberships of data points: a DPLS model is 
constructed without direct orthogonal signal 
correction (DOSC0) and the others by doing 

orthogonal filtering with 1 (DOSC1) or 2 (DOSC2) 
components retained. Here, There R2X 
(cumulative sum of the squares of X explained) 
and R2Y (cumulative sum of the squares of Y 
explained) represent measures of model’s ability 
to fit data, and Q2 indicates its discriminating 
power, i.e., cumulative fraction of Y’s total 
variance predicted by extracted components. 

For example, the DOSC0 model used 61.5% of 
X to explain 37.0% of Y with Q2 31.4%. As shown 
in Table 2, the use of the orthogonal filtering 
produced better discriminating power than DPLS 
without it: Q2 values 0.841 (DOSC1) and 0.829 
(DOSC2) vs. 0.314 (DOSC0). It means that the use 
of orthogonal filtering produces good separation 
between different groups of data, resulting in 
better discrimination performance. Thus the 
main advantage of using orthogonal filtering in 
the proposed framework is to improve the 
separability of different faults. It is made possible 
by removing the irrelevant variation that is not 
related to the separation. The number of 
components retained in orthogonal filtering 
should also be determined. In this work, one 
component of orthogonal filtering (DOSC1) is 
chosen because its Q2 value is higher than that 
of DOSC2 (i.e., 0.841 vs. 0.829). In addition, 
SVM-RFE feature selection algorithm was applied 
to orthogonally filtered training data of the test 
process. The feature selection results (i.e., 
ranking of variables) would be different 
depending on which kernel function to use.

No. of DOSC Components

DOSC0 DOSC1 DOSC2

R2X 0.615 0.407 0.450
R2Y 0.370 0.852 0.873

Q2 0.314 0.841 0.829

Table 2. DPLS results

Thus it is necessary to determine the optimal 
kernel function to be used in SVM-RFE feature 
selection. For this purpose, we tested 4 different 
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Fault
detection success rate

PCA DPCA Proposed
F1 0.92/1.00 0.91/0.98 1.00

F2 0.45/0.41 0.68/0.85 0.98

Table 3. Detection results 

F3 0.13/0.18 0.31/0.23 0.35

F4 0.89/0.85 0.91/0.99 0.99
F8 0.95/0.96 0.97/0.98 0.75

F9 0.18/0.29 0.26/0.34 0.63
F10 0.37/0.43 0.51/0.59 0.81

F13 0.89/0.88 0.90/0.97 0.98
F14 0.87/1.00 0.92/1.00 1.00

F21 0.29/0.42 0.43/0.70 0.83
Average 0.59/0.64 0.68/0.76 0.83

kernels: linear, polynomial, sigmoid, and RBF 
kernel functions. The feature selection results 
based on them are displayed in Figure 3. A 
detection success rate (i.e., proportion of the 
observations correctly detected) is plotted for 
each of the four kernels with respect to the 
number of features selected. As a result, RBF 
kernel was selected for the test process because 
it has the maximum rate of 0.86 using only 25 
selected features. 
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Fig. 3. SVM-RFE feature selection results 

The second maximum is obtained from 
polynomial (i.e., 0.83) with 23 selected features. 
On the contrary, the use of linear or sigmoid 
kernels degrades the detection performance 
significantly. 

As shown in Table 3, detection results of the 
proposed method were obtained and compared 
with those of two PCA-based methods. The first 
is a linear PCA providing lower-dimensional 
representation of original data. The second 
method is an extended version of traditional 
PCA, called dynamic PCA, which takes into 
account the serial correlations. For each of the 
two methods, Hotelling’s T2 and Q statistics are 
used to detect a fault. 

Table 3 shows the detection results for the test 
data, in which we underlined the maximum 
detection rates for each of the faults. For 
example, the fault case of F1 has the maximum 
rate of 1.00, which was obtained from Q 
statistic-based PCA method and the proposed 
method. The proposed method, as shown in 
Table 3, showed the best detection performance 
in that it yielded the highest detection rates for 
all fault cases. It is also observed that the 
maximum rates in some fault cases were 
achieved by two or three methods. The fault case 
of F4 has the maximum rate of 0.99 obtained 
from Q statistic-based DPCA method and the 
proposed method. This is also the case in F14, in 
which three methods yielded the maximum rates 
of 1.00. 

It is observed that the proposed method 
outperformed other detection methods. The 
average detection rate of the proposed method 
(i.e., 0.83), in addition, is better than those of the 
other methods: 0.59, 0.64, 0.68, and 0.76. Table 3 
also showed that the dynamic PCA method is 
better than the linear PCA method. It may be due 
to the fact that DPCA takes into account the 
serial correlations. The linear PCA method 
assumes that the data at one time is independent 
to the data at past time instances. But it is not 
the case in real data. From Table 3 we can find 
that the proposed method improved the 
detection performance of this case study 
significantly. 
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Fault
detection success rate

Without GA SVM-RFE
F1 0.88 1.00 1.00
F2 0.84 0.95 0.98
F3 0.21 0.28 0.35
F4 0.79 0.94 0.99
F8 0.58 0.70 0.75
F9 0.51 0.60 0.63
F10 0.61 0.75 0.81
F13 0.81 0.92 0.98
F14 0.85 0.99 1.00
F21 0.63 0.78 0.83

Average 0.67 0.79 0.83

Table 4. Performance comparison

Additionally, the proposed method is evaluated 
by using different feature selection methods, 
including no feature selection at all. Genetic 
algorithm (GA) based feature selection method is 
considered because it has been used successfully 
in solving many problems. This work utilized the 
GA algorithm developed by Leardi and 
Gonzalez[9] in order to do feature selection for 
the data. The detection performance of the 
proposed framework is re-examined with a slight 
modification using the same test process. The 
only change was made in the feature selection 
step of the proposed framework. 

The results of the performance comparison 
are summarized in Table 4. For an easy 
comparison, the last column of Table 3 is 
reproduced in the last column of Table 4. The 
result shows that the use of SVM-RFE feature 
selection yielded the best performance in all fault 
cases. Equal maximum detection rates are 
reported from F1. In terms of average detection 
success rate, in addition, it outperforms the 
others: 0.83 vs. 0.79 (GA feature selection) and 
0.67 (without feature selection). It is notable that 
the detection performance decreases significantly 
when no feature selection is used.

4. Conclusion

In this work, a new one-class classification 

detection method has been proposed and 
evaluated in terms of detection performance and 
feature selection. The proposed method consists 
of four steps: DOSC noise filtering, SVM-RFE 
feature selection, KFDA nonlinear representation, 
and SVDD based detection. The DOSC noise 
filtering removed unwanted variation of training 
data. As given in the case study the proposed 
method yielded good detection results and 
outperforms linear and dynamic PCA methods: 
25.4% average performance improvement as 
shown in Table 3. In addition, this work 
illustrated the importance of feature selection. 
The use of feature selection (SVM-RFE and GA) 
in the proposed method yielded better detection 
performance than the method without feature 
selection.
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