DOI QR코드

DOI QR Code

Modeling the Density and Hardness of AA2024-SiC Nanocomposites

  • Jeon, A-Hyun (Virtual Materials Lab, Department of Metallic & Materials Engineering, School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Kim, Hong In (Virtual Materials Lab, Department of Metallic & Materials Engineering, School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Sung, Hyokyung (Virtual Materials Lab, Department of Metallic & Materials Engineering, School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Reddy, N.S. (Virtual Materials Lab, Department of Metallic & Materials Engineering, School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University)
  • Received : 2019.08.09
  • Accepted : 2019.08.23
  • Published : 2019.08.28

Abstract

An artificial neural network (ANN) model is developed for the analysis and simulation of correlation between flake powder metallurgy parameters and properties of AA2024-SiC nanocomposites. The input parameters of the model are AA 2024 matrix size, ball milling time, and weight percentage of SiC nanoparticles and the output parameters are density and hardness. The model can predict the density and hardness of the unseen test data with a correlation of 0.986 beyond the experimental data. A user interface is designed to predict properties at new instances. We have used the model to simulate the individual as well as the combined influence of parameters on the properties. Moreover, we have analyzed the calculated results from the powder metallurgical point of view. The developed model can be used as a guide for further composite development.

Keywords

References

  1. A. Canakci and T. Varol: Powder Technol., 268 (2014) 72. https://doi.org/10.1016/j.powtec.2014.08.016
  2. A. Hassani, E. Bagherpour and F. Qods: J. Alloys Compd., 591 (2014) 132. https://doi.org/10.1016/j.jallcom.2013.12.205
  3. T. Varol and A. Canakci: Met. Mater. Int., 21 (2015) 704. https://doi.org/10.1007/s12540-015-5058-6
  4. T. Varol and A. Canakci: J. Alloys Compd., 649 (2015) 1066. https://doi.org/10.1016/j.jallcom.2015.07.008
  5. T. Varol, A. Canakci and S. Ozsahin: J. Alloys Compd., 739 (2018) 1005. https://doi.org/10.1016/j.jallcom.2017.12.256
  6. R. P. Lippmann: IEEE ASSP Magazine, 4 (1987) 4. https://doi.org/10.1109/MASSP.1987.1165593
  7. D. E. Rumelhart, G. E. Hinton and R. J. Williams: Nature, 323 (1986) 533. https://doi.org/10.1038/323533a0
  8. M. H. Hassoun: Fundamentals of Artificial Neural Networks, The MIT Press, Cambridge, Massachusetts, London, England, (1995).
  9. H. K. D. H. Bhadeshia: ISIJ International, 39 (1999) 966. https://doi.org/10.2355/isijinternational.39.966
  10. N. S. Reddy, B. B. Panigrahi, M. H. Choi, J.-H. Kim and C. S. Lee: Comput. Mater. Sci., 107 (2015) 175. https://doi.org/10.1016/j.commatsci.2015.05.026
  11. V. Y. Quintanilla, A. Verliefde, T.-U. Kim, A. Sadmani, M. Kennedy and G. Amy: J. Membr. Sci., 342 (2009) 251. https://doi.org/10.1016/j.memsci.2009.06.048
  12. J. D. Olden, M. K. Joy and R. G. Death: Ecol. Modell., 178 (2004) 389. https://doi.org/10.1016/j.ecolmodel.2004.03.013