지표모형에서의 중간유출 모의를 위한 지표하 유출 해석 및 평가

  • 김종건 (강원대학교 농업생명과학연구원)
  • Published : 2019.08.31

Abstract

Keywords

References

  1. Chen, J., and P. Kumar (2001), Topographic influence on the seasonal and inter-annual variation of water and energy balance of basins in North America, J. Clim., 14, 1989-2014. https://doi.org/10.1175/1520-0442(2001)014<1989:TIOTSA>2.0.CO;2
  2. Choi, H. I., P. Kumar, and X.-Z. Liang (2007), Three-dimensional volume-averaged soil moisture transport model with a scalable parameterization of subgrid topographic variability, Water Resour. Res., 43, W04414, doi:10.1029/2006WR005134.
  3. Fan. Y. G. Miguez-Macho, C. P. Weaver, R. Walko, and A. Robock (2007). Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations, J. Geophys. Res., 112, D10125, doi:10.1029/2006JD008111.
  4. Gaur, N., and B. P. Mohanty (2013), Evolution of physical controls for soil moisture in humid and subhumid watersheds, Water Resour. Res., 49, 1244-1258, doi:10.1002/wrcr.20069.
  5. Hwang, T., L. Band, and T. C. Hales (2009), Ecosystem processes at the watershed scale: Extending optimality theory from plot to catchment, Water Resour. Res., 45, W11425, doi:10.1029/2009WR007775.
  6. Joshi, C., and B. P. Mohanty (2010), Physical controls of near surface soil moisture across varying spatial scales in an agricultural landscape during SMEX02, Water Resour. Res., 46, W12503, doi:10.1029/2010WR009152.
  7. Kim, J., and B. P. Mohanty (2016). Influence of lateral subsurface flow and connectivity on soil water storage in land surface modeling. J. Geophys. Res. Atmos., 121, doi:10.1002/2015JD024067.
  8. Lu, N., B. S. Kaya, and J. W. Godt (2011), Direction of unsaturated flow in a homogeneous and isotropic hillslope, Water Resour. Res., 47, W02519, doi:10.1029/2010WR010003.
  9. Mohanty, B. P., and T. H. Skaggs (2001), Spatio-temporal evolution and time-stable characteristics of soil moisture within remote sensing footprints with varying soil, slope, and vegetation, Adv. Water Resour., 24, 1051-1067. https://doi.org/10.1016/S0309-1708(01)00034-3
  10. Yang, D., and K. Musiake (2003), A continental scale hydrological model using the distributed approach and its application to Asia, Hydrol. Processes, 17, 2855-2869. https://doi.org/10.1002/hyp.1438
  11. Wang, X.-. S., X.-. W. Jiang, L. Wan, S. Ge, and H. Li (2011), A new analytical solution of topography-driven flow in a drainage basin with depthdependent anisotropy of permeability, Water Resour. Res., 47, W09603, doi:10.1029/2011WR010507.
  12. Western, A. W., G. Bloschl, and R. B. Grayson (2001), Toward capturing hydrologically significant connectivity in spatial patterns, Water Resour. Res., 37, 83-97. https://doi.org/10.1029/2000WR900241
  13. Zaslavsky, D., and G. Sinai (1981), Surface hydrology: I. Explanation of phenomena, J. Hydraul. Div. Am. Soc. Civ. Eng., 107, 1-16.
  14. Zhu, Q., and H. S. Lin (2009), Simulation and validation of concentrated subsurface lateral flow paths in an agricultural landscape, Hydrol. Earth Sysl. Sci., 13, 1503-1518. https://doi.org/10.5194/hess-13-1503-2009