DOI QR코드

DOI QR Code

역학손상모델을 이용한 1차원 기체 주입 시험 모델링: 국제공동연구 DECOVALEX-2019 Task A Stage 1A

Numerical Modelling of One Dimensional Gas Injection Experiment using Mechanical Damage Model: DECOVALEX-2019 Task A Stage 1A

  • 이재원 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 이창수 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 김건영 (한국원자력연구원 방사성폐기물처분연구부)
  • Lee, Jaewon (Radioactive Waste Disposal Research Division, Korea Atomic Energy Research Institute) ;
  • Lee, Changsoo (Radioactive Waste Disposal Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Geon Young (Radioactive Waste Disposal Research Division, Korea Atomic Energy Research Institute)
  • 투고 : 2019.08.21
  • 심사 : 2019.08.28
  • 발행 : 2019.08.31

초록

고준위방사성폐기물처분장의 공학적 방벽에서는 다양한 원인으로 인해 기체가 발생한다. 만약 기체 생성 속도가 기체 확산 속도보다 빠를 경우 기체의 압력이 증가하게 되고, 기체 유입 압력(gas entry pressure)을 넘어서게 되면 기체가 급격히 벤토나이트 완충재를 통과하는 기체 이동 현상(gas migration)이 발생하게 되며 이는 사람과 주변 환경을 방사능에 노출시킬 수 있기 때문에, 공학적 방벽의 장기 건전성 확보 측면에서 기체 이동 현상을 명확히 규명하는 것이 매우 중요하다. 특히 벤토나이트 완충재와 같이 점토 물질을 다량 함유한 매질에서만 나타나는 매우 중요한 기체 흐름 현상인 팽창 흐름에 대한 수리-역학적 메커니즘을 규명하고, 기체 이동 현상의 정량적 평가를 위한 새로운 수치 해석 기법 개발 및 검증이 필수적이다. 따라서 본 연구에서는 공학적 방벽에서의 기체 이동 현상을 모사하고자 역학 손상 모델 및 손상도를 고려한 2상 유동 모델을 개발하였으며, 일정 체적 경계 조건 하에서의 1차원 기체 주입 시험 모사를 통해 개발된 모델의 적용성을 검토하였다. 수치 해석 결과 공극 수압 및 응력, 기체 유출량이 팽창 흐름 발생 시 급격히 증가하는 현상을 모사할 수 있었다.

In the engineering barriers of high-level radioactive waste disposal, gases could be generated through a number of processes. If the gas production rate exceeds the gas diffusion rate, the pressure of the gas increases and gases could migrate through the bentonite buffer. Because people and the environment can be exposed to radioactivity, it is very important to clarify gas migration in terms of long-term integrity of the engineered barrier system. In particular, it is necessary to identify the hydro-mechanical mechanism for the dilation flow, which is a very important gas flow phenomenon only in medium containing large amounts of clay materials such as bentonite buffer, and to develop and validate new numerical approach for the quantitative evaluation of the gas migration phenomenon. Therefore, in this study, we developed a two-phase flow model considering the mechanical damage model in order to simulate the gas migration in the engineered barrier system, and validated with 1D gas flow modelling through saturated bentonite under constant volume boundary conditions. As a result of numerical analysis, the rapid increase in pore water pressure, stress, and gas outflow could be simulated when the dilation flow was occurred.

키워드

참고문헌

  1. Ahusborde, E., Amaziane, B., Jurak, M., 2015, Three-dimensional numerical simulation by upscaling of gas migration through engineered and geological barriers for a deep repository for radioactive waste, In: Shaw, R.P., (ed.) Gas Generation and Migration in Deep Geological Radioactive Waste Repositories, Geological Society, London, Special Publications, Vol. 415, pp. 123-141.
  2. Angeli, M., Soldal, M., Skurtveit, E., Aker, E., 2009, Experimental percolation of supercritical $CO_2$ through a caprock, Energy Procedia, Vol. 1, pp. 3351-3358. https://doi.org/10.1016/j.egypro.2009.02.123
  3. Cuss, R., Harrington, J., Giot, R., Auvray, C., 2014, Experimental observations of mechanical dilation at the onset of gas flow in Callovo-Oxfordian claystone, In: Norris, S., Bruno, J., (eds) Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Geological Society, London, Special Publications, Vol. 400, pp. 507-519.
  4. Daniels, K.A., Harrington, J.F., 2017, The response of compact bentonite during a 1D gas flow test, British Geological Survey Open Report, OR/17/067, British Geological Survey, s.l.
  5. Davis, J.P., Davis, D.K., 1999, Stress-dependent permeability: characterization and modeling, Society of Petroleum Engineers, SPE Paper no. 56813.
  6. Davis, R.O., Selvadurai, A.P., 2002, Plasticity and Geomechanics, Cambridge University Press, Cambridge.
  7. Fall, M., Nasir, O., Nguyen, T., 2014, A coupled hydromechanical model for simulation of gas migration in host sedimentary rocks for nuclear waste repositories, Engineering Geology, Vol. 176, pp. 24-44. https://doi.org/10.1016/j.enggeo.2014.04.003
  8. Fatt, I., Klikoff, W.A., 1959, Effect of Fractional Wettability on Multiphase Flow Through Porous Media, AIME Transactions, Vol. 216, pp. 246.
  9. Gawin, D., Majorana, C.E., Schrefler, B.A., 2001, Modelling thermo-mechanical behaviour of high performance concrete in high temperature environment, In: de Borst et al., (Eds.), Fracture Mechanics of Concrete Structure.
  10. Harrington, J.F., Horseman, S.T., 1999, Gas transport properties of clays and mudrocks, In: Aplin, A.C., Fleet, A.J., Macquaker, J.H., (eds) Muds and Mudstones: Physical and Fluid Flow Properties, Geological Society of London, London, Special Publications, Vol. 158, pp. 107-124.
  11. Harrington, J.F., Noy, D.J., Horseman, S.T., Birchall, J.D., Chadwick, R.A., 2009, Laboratory study of gas and water flow in the Nordland Shale, Sleipner, North Sea, In: Grobe, M., Pashin, J.C., Dodge, R.L., (eds) Carbon Dioxide Sequestration in Geological Media-State of the Science, AAPG, Tulsa, Oklahoma, Studies in Geology, Vol. 59, pp. 521-543.
  12. Harrington, J.F., De Lavaissiere, R., Noy, D.J., Cuss, R.J., Talandier, J., 2012, Gas flow in Callovo-Oxfordian claystone (COx): results from laboratory and field-scale measurements, Mineralogical Magazine, Vol. 76, pp. 3303-3318. https://doi.org/10.1180/minmag.2012.076.8.43
  13. Hoch, A.R., Cliffe, K.A., Swift, B.T., Rodwell, W.R., 2004, Modelling Gas Migrationin Compacted Bentonite: GAMBIT Club Phase 3, Final Report, POSIVA, Olkiluoto, Finland.
  14. Horseman, S.T., 1996, Generation and migration of repository gases: some key considerations, Radioactive Waste Disposal, Proc. International 2-Day Conference, London, 21-22 November 1996, IBC Technical Services.
  15. Horseman, S.T., Harrington, J.F., Sellin, P., 1996, Gas migration in Mx80 buffer bentonite, In: Symposium on the Scientific Basis for Nuclear Waste Management XX (Boston), Materials Research Society, Vol. 465, pp. 1003-1010.
  16. Horseman, S.T., Harrington, J.F., Sellin, P., 1997, Gas migration in Mx80 Buffer Bentonite Symposium on the Scientific Basis for Nuclear Waste Management XX, Boston, Materials Research Society, pp. 1003-1010.
  17. Horseman, S.T., Harrington, J.F., Sellin, P., 1999, Gas migration in clay barriers, Engineering Geology, Vol. 54, pp. 139-149. https://doi.org/10.1016/S0013-7952(99)00069-1
  18. Horseman, S.T., Harrington, J.F., Sellin, P., 2004, Water and gas flow in Mx80 bentonite buffer clay, In: Symposium on the Scientific Basis for Nuclear Waste Management XXVII (Kalmar), Materials Research Society, Vol. 807, pp. 715-720.
  19. IAEA, 2011, Geological disposal facilities for radioactive waste, IAEA Specific Safety Guide No. SSG-14.
  20. Jason, L., Huerta, G., Pijaudier-Cabot, S., Ghavamian, S., 2006 An elastic-plastic damage formulation for concrete: application to elementary tests and comparison with an isotropic model, Computer Methods in Applied Mechanics and Engineering, Vol. 195, pp. 7077-7092. https://doi.org/10.1016/j.cma.2005.04.017
  21. Jirasek, M., 2004, Non-local damage mechanics with application to concrete, French Journal of Civil Engineering, Vol. 8, pp. 683-707.
  22. Lee, J., Fenves, G.L., 1998, Plastic-damage model for cyclic loading of concrete structures, Journal of Engineering Mechanics, Vol. 124, pp. 892. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  23. Marschall, P., Horseman, S.T., Gimmi, T., 2005, Characterisation of gas transport properties of the opalinus clay, a potential host rock formation for radioactive waste disposal, Oil and Gas Science and Technology - Rev. IFP, Vol. 60, pp. 121-139. https://doi.org/10.2516/ogst:2005008
  24. Mazars, J., 1986, A description of micro and macroscale damage of concrete structure, Engineering Fracture Mechanics, Vol. 25, pp. 729-737. https://doi.org/10.1016/0013-7944(86)90036-6
  25. Meschke, G., Grasberger, S., 2003, Numerical modeling of coupled hydromechanical degradation of cementitious materials, Journal of Engineering Mechanics, Vol. 129(4), pp. 383-392. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:4(383)
  26. Nash, P.J., Swift, B.T., Goodfield, M., Rodwell, W.R., 1998, Modelling Gas Migration in Compacted Bentonite: A report produced for the GAMBIT Club, POSIVA, Helsinki.
  27. NEA-EC, 2003, Engineered Barrier Systems and the Safety of Deep Geological Repositories, State of-the-art Report, EUR 19964 EN, Brussels: European Commission, Paris: OECD, ISBN 92-64-18498-8.
  28. Nguyen, T., Le, A., 2015, Simultaneous gas and water flow in a damage-susceptible bedded argillaceous rock, Canadian Geotechnical Journal, Vol. 52, pp. 18-32. https://doi.org/10.1139/cgj-2013-0457
  29. Ortiz, L., Volckaert, G., Mallants, D., 2002, Gas generation and migration in Boom Clay, a potential host rock formation for nuclear waste storage, Engineering Geology, Vol. 64, pp. 287-296. https://doi.org/10.1016/S0013-7952(01)00107-7
  30. Pruess, K., Oldenburg, C., Moridis, G., 1999, TOUGH2 User's Guide, Version 2.0, Lawrence Berkeley National Laboratory Report LBNL-43134.
  31. Rutqvist, J., Wu, Y-S., Tsang, C.F., Bodvarsson, G., 2002, A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock, International Journal of Rock Mechanics and Mining Sciences, Vol. 39, pp. 429-442. https://doi.org/10.1016/S1365-1609(02)00022-9
  32. Shaw, R.P., 2015, The Fate of Repository Gases (FORGE) project, In: Shaw, R.P., (ed.) Gas Generation and Migration in Deep Geological Radioactive Waste Repositories, Geological Society, London, Special Publications, Vol. 415, pp. 1-7.
  33. Simo, J., Ju, J., 1987, Strain- and stress-based continuum damage models-I formulation, International Journal of Solids and Structures, Vol. 23, pp. 821-840. https://doi.org/10.1016/0020-7683(87)90083-7
  34. Souley, M., Homand, F., Pepa, S., Hoxha, D., 2001, Damage-induced permeability changes in granite: a case example at the URL in Canada, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 38 (2), pp. 297-310. https://doi.org/10.1016/S1365-1609(01)00002-8
  35. Tang, C.A., Tham, L.G., Lee, P.K.K., Yang, T.H., Li, L.C., 2002, Coupled analysis of flow, stress and damage (FSD) in rock failure, International Journal of Rock Mechanics & Mining Sciences, Vol. 39, pp. 477-489. https://doi.org/10.1016/S1365-1609(02)00023-0
  36. Weetjens, E., Sillen, X., 2006, Gas generation and migration in the near field of a supercontainerbased disposal system for vitrified high-level radioactive waste, In: Proceedings of the 11th International High-Level Radioactive Waste Management Conference (IHLRWM), Las Vegas, Nevada, 30 April- 4 May 2006, American Nuclear Society (ANS), pp. 1-8.
  37. Wikramaratna, R.S., Goodfield, M., Rodwell, W.R., Nash, P.J., Agg, P. J., 1993, A Preliminary Assessment of Gas Migration from the Copper/Steel Canister, SKB Technical report TR 93-31.